Combined hydrothermal carbonization and gasification of biomass with carbon capture

Bio-energy with carbon capture and storage (BECCS) can result in negative net carbon emissions and may therefore provide an important technology option for meeting current greenhouse gas stabilization targets. To this end, syngas from biomass gasification combined with pre-combustion carbon capture can be used to produce either biofuels or electricity. Pre-treating the biomass with hydrothermal carbonization (HTC) produces a coal-like substance, biocoal, which is potentially better suited for entrained flow gasification than raw biomass. This paper compares HTC followed by entrained flow gasification of the biocoal with fluidized bed gasification of raw wood, both with carbon capture and storage (CCS). Simulation studies undertaken with Aspen Plus are interpreted using exergy analysis. Syngas production is more efficient from biocoal than from raw wood but the conversion losses in the HTC process outweigh the efficiency gains in the gasification. Carbon losses through gaseous and dissolved byproducts in the HTC also limit the capture rate. A CCS-IGCC with fluidized bed gasification using raw wood results in an electrical efficiency of 28.6% (HHV) and a carbon capture rate of 84.5%, while the conversion chain of HTC and a CCS-IGCC with entrained flow gasification yields an electrical efficiency of 27.7% and a capture rate of 72.7%.

[1]  C. Bouallou,et al.  Efficiency of an Integrated Gasification Combined Cycle (IGCC) power plant including CO2 removal , 2008 .

[2]  H. Gerhauser,et al.  BO2-technology for biomass upgrading into solid fuel - pilot-scale testing and market implementation , 2008 .

[3]  B. Erlach,et al.  Co-Production of Electricity; Heat and Biocoal Pellets from Biomass: A Techno-Economic Comparison with Wood Pelletizing , 2011 .

[4]  Jan Szargut,et al.  Exergy Analysis of Thermal, Chemical, and Metallurgical Processes , 1988 .

[5]  José Corella,et al.  Commercial Steam Reforming Catalysts To Improve Biomass Gasification with Steam−Oxygen Mixtures. 1. Hot Gas Upgrading by the Catalytic Reactor , 1997 .

[6]  S. D. Peteves,et al.  Co-firing of biomass with coal: constraints and role of biomass pretreatment , 2006 .

[7]  Satish Gadde,et al.  ADVANCED F CLASS GAS TURBINES CAN BE A RELIABLE CHOICE FOR IGCC APPLICATIONS , 2006 .

[8]  N. Nakicenovic,et al.  Issues related to mitigation in the long-term context , 2007 .

[9]  Victor R. Vasquez,et al.  Thermal pretreatment of lignocellulosic biomass , 2009 .

[10]  Theodosios Korakianitis,et al.  A projection of energy consumption and carbon dioxide emissions in the electricity sector for Saudi Arabia: The case for carbon capture and storage and solar photovoltaics , 2013 .

[11]  N. Nakicenovic,et al.  Climate change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers. , 2007 .

[12]  J. Hepola Sulfur transformations in catalytic hot-gas cleaning of gasification gas , 2000 .

[13]  N. Berge,et al.  Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis , 2011 .

[14]  Jae-Chang Kim,et al.  Two-stage desulfurization process for hot gas ultra cleanup in IGCC , 2006 .

[15]  S. Channiwala,et al.  A UNIFIED CORRELATION FOR ESTIMATING HHV OF SOLID, LIQUID AND GASEOUS FUELS , 2002 .

[16]  S.V.B. van Paasen,et al.  Gasification of non-woody biomass , 2006 .

[17]  A. Funke,et al.  Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering , 2010 .

[18]  José Corella,et al.  Biomass Gasification: Produced Gas Upgrading by In-Bed Use of Dolomite , 1997 .

[19]  Michael J. Sadowsky,et al.  Hydrothermal carbonization of distiller's grains , 2011 .

[20]  Nicole D Berge,et al.  Hydrothermal carbonization of municipal waste streams. , 2011, Environmental science & technology.

[21]  H. Ted Davis,et al.  Hydrothermal carbonization of microalgae , 2010 .

[22]  Socrates Kypreos,et al.  The Economics of Low Stabilization: Model Comparison of Mitigation Strategies and Costs , 2010 .

[23]  George Tsatsaronis,et al.  Comparison of carbon capture IGCC with pre-combustion decarbonisation and with chemical-looping combustion , 2011 .

[24]  O. Sackur,et al.  Die Anwendung hoher Drucke bei chemischen Vorgängen und eine Nachbildung des Entstehungsprozesses der Steinkohle. Von Friedrich Bergius. 58 S. und 4 Abbildungen. Verlag von Wilhelm Knapp, Halle a. S. 1913. Preis geb. 2,80 Mk , 1914, Zeitschrift für Elektrochemie und angewandte physikalische Chemie.

[25]  David William Keith,et al.  Engineering economic analysis of biomass IGCC with carbon capture and storage , 2005 .

[26]  Nicolaus Dahmen,et al.  Cost estimate for biosynfuel production via biosyncrude gasification , 2009 .

[27]  F. Bergius Die Anwendung hoher Drucke bei chemischen Vorgängen und eine Nachbildung des Entstehungsprozesses der Steinkohle , 1913 .

[28]  Haiping Yang,et al.  Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth , 2013 .

[29]  Steve Rahm,et al.  Addressing Gas Turbine Fuel Flexibility , 2009 .

[30]  H Audus,et al.  Climate change mitigation by biomass gasification combined with CO2 capture and storage , 2005 .

[31]  Robert C. Brown,et al.  Ancillary equipment for biomass gasification , 2002 .