Evidence for Borylene Carbonyl (LHB═C═O) and Base-Stabilized (LHB═O) and Base-Free Oxoborane (RB≡O) Intermediates in the Reactions of Diborenes with CO2.

Doubly N-heterocyclic-carbene-stabilized diborenes undergo facile reactions with CO2, initially providing dibora-β-lactones. These lactones convert over time to their 2,4-diboraoxetan-3-one isomers through a presumed dissociative pathway and hypovalent boron species borylene carbonyls (LHB═C═O) and base-stabilized oxoboranes (LHB═O). Repeating these reactions with doubly cyclic(alkyl)(amino)carbene-stabilized diborenes allowed the isolation of a borylene carbonyl intermediate, whereas a base-stabilized oxoborane could be inferred by the isolation of a boroxine from the reaction mixture. These results, supported by calculations, confirm the presumed mechanism of the diboralactone-to-diboraoxetanone isomerization while also establishing a surprising level of stability for three unknown or very rare hypovalent boron species: base-stabilized derivatives of the parent borylene carbonyl (LHB═C═O) and parent oxoborane (LHB═O) as well as base-free oxoboranes (RB≡O).

[1]  Zuowei Xie,et al.  Synthesis, Structure and Reactivity of Acid-Free Neutral Oxoborane. , 2021, Angewandte Chemie.

[2]  Zhigang Zou,et al.  Inorganic Frustrated Lewis Pairs in Photocatalytic CO 2 Reduction , 2021 .

[3]  M. Su,et al.  A N-Phosphinoamidinato NHC-Diborene Catalyst for Hydroboration. , 2021, Journal of the American Chemical Society.

[4]  M. Peruzzini,et al.  Recent Advances in Metal Catalyst Design for CO2 Hydroboration to C1 Derivatives , 2021, Catalysts.

[5]  B. Trzaskowski,et al.  Superseding β‐Diketiminato Ligands: An Amido Imidazoline‐2‐Imine Ligand Stabilizes the Exhaustive Series of B=X Boranes (X=O, S, Se, Te) , 2020, Angewandte Chemie.

[6]  Rian D. Dewhurst,et al.  Towards the catalytic activation of inert small molecules by main-group ambiphiles , 2020, Communications Chemistry.

[7]  Rian D. Dewhurst,et al.  One-pot, room-temperature conversion of dinitrogen to ammonium chloride at a main-group element , 2020, Nature Chemistry.

[8]  L. Greb,et al.  Element‐Ligand Cooperativity with p‐Block Elements , 2020 .

[9]  Liang He,et al.  CO2 Capture and in situ Catalytic Transformation , 2019, Front. Chem..

[10]  S. Aldridge,et al.  An Acid-Free Anionic Oxoborane Isoelectronic with Carbonyl: Facile Access and Transfer of a Terminal B═O Double Bond. , 2019, Journal of the American Chemical Society.

[11]  Rebecca L. Melen Frontiers in molecular p-block chemistry: From structure to reactivity , 2019, Science.

[12]  H. Braunschweig,et al.  Metallomimetic Chemistry of Boron. , 2019, Chemical reviews.

[13]  H. Braunschweig,et al.  Facile Synthesis of a Stable Dihydroboryl {BH2 }- Anion. , 2018, Angewandte Chemie.

[14]  S. Inoue,et al.  NHCs in Main Group Chemistry. , 2018, Chemical reviews.

[15]  Rian D. Dewhurst,et al.  CO2 Binding and Splitting by Boron-Boron Multiple Bonds. , 2018, Angewandte Chemie.

[16]  H. Braunschweig,et al.  Reactivity of a Dihydrodiborene with CO: Coordination, Insertion, Cleavage, and Spontaneous Formation of a Cyclic Alkyne. , 2017, Angewandte Chemie.

[17]  Etienne Rochette,et al.  Design principles in frustrated lewis pair catalysis for the functionalization of carbon dioxide and heterocycles , 2017 .

[18]  H. Braunschweig,et al.  Main-Group Metallomimetics: Transition Metal-like Photolytic CO Substitution at Boron. , 2017, Journal of the American Chemical Society.

[19]  H. Braunschweig,et al.  Formation and Reactivity of Electron-Precise B-B Single and Multiple Bonds. , 2017, Angewandte Chemie.

[20]  D. Stephan The broadening reach of frustrated Lewis pair chemistry , 2016, Science.

[21]  H. Braunschweig,et al.  Uncatalyzed Hydrogenation of First-Row Main Group Multiple Bonds. , 2016, Chemistry.

[22]  H. Wegner,et al.  Bis-Boron Compounds in Catalysis: Bidentate and Bifunctional Activation. , 2016, Chemistry.

[23]  S. Bontemps Boron-mediated activation of carbon dioxide , 2016 .

[24]  S. Yadav,et al.  Compounds with Low‐Valent p‐Block Elements for Small Molecule Activation and Catalysis , 2016 .

[25]  D. Stephan Frustrated Lewis pairs: from concept to catalysis. , 2015, Accounts of chemical research.

[26]  G. Bertrand,et al.  Cyclic (alkyl)(amino)carbenes (CAACs): stable carbenes on the rise. , 2015, Accounts of chemical research.

[27]  Hongming Wang,et al.  Recent advances in carbon dioxide capture, fixation, and activation by using N-heterocyclic carbenes. , 2014, ChemSusChem.

[28]  Marc-André Courtemanche,et al.  Transition-metal-free catalytic reduction of carbon dioxide. , 2014, Chemistry.

[29]  H. Braunschweig,et al.  Metathesis reactions of a manganese borylene complex with polar heteroatom-carbon double bonds: a pathway to previously inaccessible carbene complexes. , 2013, Journal of the American Chemical Society.

[30]  Rian D. Dewhurst,et al.  Single, double, triple bonds and chains: the formation of electron-precise B-B bonds. , 2013, Angewandte Chemie.

[31]  G. Erker Frustrated Lewis pairs: Reactions with dihydrogen and other “small molecules” , 2011 .

[32]  S. Westcott BO chemistry comes full circle. , 2010, Angewandte Chemie.

[33]  Holger Braunschweig,et al.  Oxoboryl Complexes: Boron−Oxygen Triple Bonds Stabilized in the Coordination Sphere of Platinum , 2010, Science.

[34]  Douglas W Stephan,et al.  Frustrated Lewis pairs: metal-free hydrogen activation and more. , 2010, Angewandte Chemie.

[35]  N. Zelinsky Ueber die Synthese der Menthancarbonsäure und der Camphancarbonsäure , 1902 .

[36]  D. Stephan Frustrated Lewis Pairs. , 2015, Journal of the American Chemical Society.

[37]  D. O′Hare,et al.  FLP-mediated activations and reductions of CO2 and CO. , 2013, Topics in current chemistry.

[38]  A. J. Arduengo,et al.  Carbenes introduction. , 2009, Chemical reviews.

[39]  D. Bourissou,et al.  Stable Carbenes. , 2000, Chemical reviews.