Confined Tamm plasmon lasers.

We demonstrate that confined Tamm plasmon modes can be advantageously exploited for the realization of new kind of metal/semiconductor lasers. Laser emission is demonstrated for Tamm structures with various diameters of the metallic disks which provide the confinement. A reduction of the threshold with the size is observed. The competition between the acceleration of the spontaneous emission and the increase of the losses leads to an optimal size, which is in good agreement with calculations.

[1]  Jean Decobert,et al.  A hybrid plasmonic semiconductor laser , 2013 .

[2]  P. Senellart,et al.  Controlling spontaneous emission with plasmonic optical patch antennas. , 2012, Nano letters (Print).

[3]  van Pj René Veldhoven,et al.  Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature. , 2012, Optics express.

[4]  T. O’Brien,et al.  Metal-cavity quantum-dot lasers with enhanced thermal performance. , 2012, Optics letters.

[5]  A. Lemaître,et al.  Single photon source using confined Tamm plasmon modes , 2012 .

[6]  A. Zakhidov,et al.  Phase-locked coherent modes in a patterned metal–organic microcavity , 2012, Nature Photonics.

[7]  A. Lemaître,et al.  Lasing in a hybrid GaAs/silver Tamm structure , 2012 .

[8]  Wayne Dickson,et al.  Low-temperature plasmonics of metallic nanostructures. , 2012, Nano letters.

[9]  M. Khajavikhan,et al.  Thresholdless nanoscale coaxial lasers , 2011, Nature.

[10]  Rupert F. Oulton,et al.  Surface plasmon lasers: sources of nanoscopic light , 2012 .

[11]  A. Lemaître,et al.  Evidence for confined tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission. , 2011, Physical review letters.

[12]  S. Chuang,et al.  Metal-cavity surface-emitting microlaser with hybrid metal-DBR reflectors. , 2011, Optics letters.

[13]  H. Yang,et al.  Observation of Tamm plasmon polaritons in visible regime from ZnO/Al2O3 distributed Bragg reflector – Ag interface , 2011 .

[14]  Pierre Berini,et al.  Surface plasmon–polariton amplifiers and lasers , 2011, Nature Photonics.

[15]  G. Cirmi,et al.  Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures. , 2010, ACS nano.

[16]  Martin T. Hill,et al.  Status and prospects for metallic and plasmonic nano-lasers [Invited] , 2010 .

[17]  Timothy Chi Hin Liew,et al.  Exciton-polariton integrated circuits , 2010 .

[18]  A. Lemaître,et al.  Emission of Tamm plasmon/exciton polaritons , 2009 .

[19]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[20]  O. Painter,et al.  Surface-plasmon mode hybridization in subwavelength microdisk lasers , 2009, 0908.3515.

[21]  Xiang Zhang,et al.  Plasmon lasers at deep subwavelength scale , 2009, Nature.

[22]  J. M. Chamberlain,et al.  Tamm plasmon polaritons: Slow and spatially compact light , 2008 .

[23]  Pierre Benech,et al.  Three-dimensional analysis of cylindrical microresonators based on the aperiodic Fourier modal method. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[24]  Isabelle Sagnes,et al.  Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities. , 2007, Physical review letters.

[25]  J. M. Chamberlain,et al.  Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror , 2007 .

[26]  M. Smit,et al.  Lasing in metallic-coated nanocavities , 2007 .

[27]  I. Shelykh,et al.  Lossless interface modes at the boundary between two periodic dielectric structures , 2005 .

[28]  Nicolas Bonod,et al.  Differential theory of diffraction by finite cylindrical objects. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[29]  T. Numai Fundamentals of semiconductor lasers , 2004 .

[30]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[31]  R. Ushigome,et al.  Large spontaneous emission factor of 0.1 in a microdisk injection laser , 2001, IEEE Photonics Technology Letters.

[32]  Kim,et al.  Two-dimensional photonic band-Gap defect mode laser , 1999, Science.

[33]  Yong-hee Lee,et al.  Spontaneous emission factor of oxidized vertical-cavity surface-emitting lasers from the measured below-threshold cavity loss , 1997, CLEO '97., Summaries of Papers Presented at the Conference on Lasers and Electro-Optics.

[34]  Stanley,et al.  Saturation of the strong-coupling regime in a semiconductor microcavity: Free-carrier bleaching of cavity polaritons. , 1995, Physical review. B, Condensed matter.

[35]  Yamamoto,et al.  Spontaneous-emission coupling factor and mode characteristics of planar dielectric microcavity lasers. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[36]  Machida,et al.  Microcavity semiconductor laser with enhanced spontaneous emission. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[37]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .