Plasmon exciton-polariton lasing

Strong light-matter interaction leads to the appearance of new states, i.e. exciton-polaritons, with photophysical properties rather distinct from their constituents. Recent developments in fabrication techniques allow us to make metallic structures with strong electric field confinement in nanoscale mode volumes, allowing for a facile assembly of strongly coupled systems at room temperature based on a hybrid organic-plasmonic architecture. In this research, a planar array of metallic nano-antennas is covered by a polymer layer doped with organic molecules, achieving strong coupling of organic excitons with collective plasmonic resonances in the array. We use photoluminescence spectroscopy to measure an onset in nonlinear emission and polariton lasing in this system. At increasing molecular doping levels we observe an increase of the Rabi splitting caused by strong coupling and a concomitant decrease in the lasing threshold. This behavior is observed in spite of a strong reduction in the photoluminescence lifetime and the quantum yield of the dye. Using angular resolved photoluminescence spectroscopy, we measure the thermalization and condensation of plasmon-exciton-polaritons (PEPs) into a mode which is dark in the linear regime. These measurements can be interpreted in terms of stimulated scattering of PEPs at room temperature in the open cavity defined by the nano-antenna array [1, 2]. The lowest threshold that we measure is lower than previous values reported at room temperature in organic materials using microcavities. These results illustrate the potential of metamaterials and plasmonic systems for polariton lasing in spite of the inherent losses of metals.

[1]  G. Lozano,et al.  Control of the external photoluminescent quantum yield of emitters coupled to nanoantenna phased arrays , 2015 .

[2]  M. S. Skolnick,et al.  Strong exciton–photon coupling in an organic semiconductor microcavity , 1998, Nature.

[3]  V. Savona,et al.  Bose–Einstein condensation of exciton polaritons , 2006, Nature.

[4]  F. García-Vidal,et al.  Cavity-induced modifications of molecular structure in the strong coupling regime , 2015, 1506.03331.

[5]  M. Pettersson,et al.  Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules. , 2009, Physical review letters.

[6]  M. Verschuuren,et al.  Substrate conformal imprint lithography for nanophotonics , 2010 .

[7]  G. Rocca,et al.  Microscopic theory of polariton lasing via vibronically assisted scattering , 2013, 1306.2222.

[8]  J. Bloch,et al.  High-temperature ultrafast polariton parametric amplification in semiconductor microcavities , 2001, Nature.

[9]  Xiang Zhang,et al.  Plasmon lasers at deep subwavelength scale , 2009, Nature.

[10]  J. Mugnier,et al.  Strong coupling between surface plasmons and excitons in an organic semiconductor. , 2004, Physical review letters.

[11]  Boris N. Chichkov,et al.  Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions , 2012 .

[12]  S. Forrest,et al.  Strong exciton-photon coupling in an organic single crystal microcavity. , 2008, Physical review letters.

[13]  P. Lagoudakis,et al.  Room-temperature polariton lasing in semiconductor microcavities. , 2007, Physical review letters.

[14]  Piers Andrew,et al.  Relationship between photonic band structure and emission characteristics of a polymer distributed feedback laser , 2001 .

[15]  Daniele Sanvitto,et al.  The road towards polaritonic devices. , 2016, Nature materials.

[16]  F. Spano Optical microcavities enhance the exciton coherence length and eliminate vibronic coupling in J-aggregates. , 2015, The Journal of chemical physics.

[17]  S. A. Maier,et al.  Nonlinear interactions in an organic polariton condensate , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[18]  P. Mulvaney,et al.  Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals. , 2009, Nano letters.

[19]  Erik Jan Geluk,et al.  Surface plasmon lasing observed in metal hole arrays. , 2013, Physical review letters.

[20]  P. Littlewood,et al.  Polariton condensation with saturable molecules dressed by vibrational modes , 2013, 1303.3720.

[21]  B. Maes,et al.  Tailoring Dispersion and Eigenfield Profiles of Plasmonic Surface Lattice Resonances , 2014 .

[22]  F. García-Vidal,et al.  Extraordinary exciton conductance induced by strong coupling. , 2014, Physical review letters.

[23]  William L. Barnes,et al.  Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays , 2005 .

[24]  J. Schachenmayer,et al.  Cavity-enhanced transport of excitons. , 2014, Physical review letters.

[25]  J. Rivas,et al.  Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas. , 2010, Physical review letters.

[26]  Stefan A. Maier,et al.  Ultrafast plasmonic nanowire lasers near the surface plasmon frequency , 2014, Nature Physics.

[27]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[28]  A. Femius Koenderink,et al.  Lasing at the band edges of plasmonic lattices , 2014, 1409.7293.

[29]  W. Barnes,et al.  Plasmonic surface lattice resonances on arrays of different lattice symmetry , 2014 .

[30]  F. G. D. Abajo Colloquium: Light scattering by particle and hole arrays , 2007, 0903.1671.

[31]  M. S. Skolnick,et al.  Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation , 2000 .

[32]  Ullrich Scherf,et al.  Room-temperature Bose-Einstein condensation of cavity exciton-polaritons in a polymer. , 2014, Nature materials.

[33]  Nonlinear interactions in an organic polariton condensate , 2014, CLEO 2014.

[34]  Y. Gartstein,et al.  Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons. , 2011, Physical review letters.

[35]  A. Micolich,et al.  Realizing lateral wrap-gated nanowire FETs: controlling gate length with chemistry rather than lithography. , 2011, Nano letters.

[36]  G. Rocca,et al.  Organic-based microcavities with vibronic progressions: Photoluminescence , 2009 .

[37]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[38]  Michael Moeller,et al.  UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing , 2010 .

[39]  M. Käll,et al.  Realizing Strong Light-Matter Interactions between Single-Nanoparticle Plasmons and Molecular Excitons at Ambient Conditions. , 2015, Physical review letters.

[40]  Wei Zhou,et al.  Plasmonic bowtie nanolaser arrays. , 2012, Nano letters.

[41]  J. Rivas,et al.  Surface lattice resonances strongly coupled to Rhodamine 6G excitons: tuning the plasmon-exciton-polariton mass and composition. , 2013, Optics express.

[42]  I. Carusotto,et al.  Superfluidity of polaritons in semiconductor microcavities , 2009 .

[43]  Pavlos G. Lagoudakis,et al.  Ultrafast polariton population build-up mediated by molecular phonons in organic microcavities , 2011 .

[44]  Stephen R. Forrest,et al.  Room-temperature polariton lasing in an organic single-crystal microcavity , 2010 .

[45]  O. Avayu,et al.  Aluminum Nanoantenna Complexes for Strong Coupling between Excitons and Localized Surface Plasmons. , 2015, Nano letters.

[46]  J. Gómez Rivas,et al.  Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas. , 2009, Physical review letters.

[47]  George C Schatz,et al.  Lasing action in strongly coupled plasmonic nanocavity arrays. , 2013, Nature nanotechnology.

[48]  Antti-Pekka Eskelinen,et al.  Plasmonic surface lattice resonances at the strong coupling regime. , 2014, Nano letters.

[49]  C. Weisbuch,et al.  Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. , 1992, Physical review letters.

[50]  George C Schatz,et al.  Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. , 2004, The Journal of chemical physics.

[51]  T. Ebbesen,et al.  Conductivity in organic semiconductors hybridized with the vacuum field. , 2014, Nature materials.

[52]  J. Feist,et al.  Thermalization and cooling of plasmon-exciton polaritons: towards quantum condensation. , 2012, Physical review letters.

[53]  Rajeev J Ram,et al.  Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers. , 1996, Physical review. A, Atomic, molecular, and optical physics.