Nano-antenna in a photoconductive photomixer for highly efficient continuous wave terahertz emission

We report highly efficient continuous-wave terahertz (THz) photoconductive antenna based photomixer employing nano-gap electrodes in the active region. The tip-to-tip nano-gap electrode structure provides strong THz field enhancement and acts as a nano-antenna to radiate the THz wave generated in the active region of the photomixer. In addition, it provides good impedance matching to the THz planar antenna and exhibits a lower RC time constant, allowing more efficient radiation especially at the higher part of the THz spectrum. As a result, the output intensity of the photomixer with the new nano-gap electrode structure in the active region is two orders of magnitude higher than that of a photomixer with typical interdigitated electrodes. Significant improvement in the THz emission bandwidth was also observed. An efficient continuous wave THz source will greatly benefit compact THz system development for high resolution THz spectroscopy and imaging applications.

[1]  A. Davies,et al.  Optimization of photomixers and antennas for continuous-wave terahertz emission , 2005, IEEE Journal of Quantum Electronics.

[2]  P. Taday,et al.  Detection and identification of explosives using terahertz pulsed spectroscopic imaging , 2005 .

[3]  C. L. Dennis,et al.  Photomixing up to 3.8 THz in low‐temperature‐grown GaAs , 1995 .

[4]  Stefan A. Maier,et al.  Dual band terahertz waveguiding on a planar metal surface patterned with annular holes , 2010 .

[5]  Jean-Jacques Greffet,et al.  Resonant optical antennas , 2013, The 8th European Conference on Antennas and Propagation (EuCAP 2014).

[6]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[7]  Koji Ishibashi,et al.  An on-chip near-field terahertz probe and detector , 2008 .

[8]  G. Park,et al.  Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit , 2009 .

[9]  J. Pendry,et al.  Mimicking Surface Plasmons with Structured Surfaces , 2004, Science.

[10]  J. Reno,et al.  A 1.8-THz quantum cascade laser operating significantly above the temperature of ℏω/kB , 2011 .

[11]  Elliott R. Brown,et al.  THz Generation by Photomixing in Ultrafast Photoconductors , 2003 .

[12]  Qing Hu,et al.  Tuning a terahertz wire laser , 2009, 2010 IEEE Photonics Society Winter Topicals Meeting Series (WTM).

[13]  R Kunkel,et al.  Continuous wave terahertz systems exploiting 1.5 microm telecom technologies. , 2009, Optics express.

[14]  Qi Jie Wang,et al.  Designer spoof surface plasmon structures collimate terahertz laser beams. , 2010, Nature materials.

[15]  S. R. Andrews,et al.  Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces , 2008 .

[16]  E. Linfield,et al.  Terahertz quantum cascade lasers , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[17]  Willie J Padilla,et al.  A metamaterial solid-state terahertz phase modulator , 2009 .

[18]  W. R. Tribe,et al.  Resonant dipole antennas for continuous-wave terahertz photomixers , 2004 .

[19]  J. Aizpurua,et al.  Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches. , 2010, Nano letters.

[20]  Sascha Preu,et al.  Tunable, continuous-wave Terahertz photomixer sources and applications , 2011 .

[21]  Carlo Sirtori,et al.  Metal-metal terahertz quantum cascade laser with micro-transverse- electromagnetic-horn antenna , 2008 .

[22]  Juliette Mangeney,et al.  Continuous wave terahertz generation up to 2THz by photomixing on ion-irradiated In0.53Ga0.47As at 1.55μm wavelengths , 2007 .

[23]  Arthur C. Gossard,et al.  Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power , 2001 .

[24]  Xicheng Zhang,et al.  Materials for terahertz science and technology , 2002, Nature materials.

[25]  Mattias Beck,et al.  Low-divergence single-mode terahertz quantum cascade laser , 2009 .

[26]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[27]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[28]  M. Nuss,et al.  Imaging with terahertz waves. , 1995, Optics letters.

[29]  G. Si,et al.  Greatly enhanced continuous-wave terahertz emission by nano-electrodes in a photoconductive photomixer , 2012 .

[30]  Dirk C. Keene Acknowledgements , 1975 .

[31]  P. Siegel Terahertz Technology , 2001 .

[32]  Abul K. Azad,et al.  Experimental demonstration of frequency-agile terahertz metamaterials , 2008 .

[33]  Gisbert Winnewisser,et al.  Spectroscopy in the terahertz region , 1995 .

[34]  O. B. McMahon,et al.  Terahertz photomixing with diode lasers in low‐temperature‐grown GaAs , 1995 .

[35]  M Unlu,et al.  Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes. , 2013, Nature communications.

[36]  Qing Hu,et al.  186 K Operation of Terahertz Quantum-Cascade Lasers Based on a Diagonal Design , 2009 .

[37]  Ian Farrer,et al.  Enhanced terahertz emission from a multilayered low temperature grown GaAs structure , 2010 .