Radial generation of n-dimensional poisson processes

A simple method is proposed for the generation of successive 'nearest neighbours' to a given origin in an n-dimensional Poisson process. It is shown that the method provides efficient simulation of random Voronoi polytopes. Results are given of simulation studies in two and three dimensions.

[1]  J. G. Wendel A Problem in Geometric Probability. , 1962 .

[2]  R E Miles RANDOM POLYGONS DETERMINED BY RANDOM LINES IN A PLANE. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Maurice G. Kendall,et al.  A Course in the Geometry of n Dimensions , 1962 .

[4]  J. Finney,et al.  Random packings and the structure of simple liquids II. The molecular geometry of simple liquids , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[5]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[6]  R. E. Miles,et al.  Monte carlo estimates of the distributions of the random polygons of the voronoi tessellation with respect to a poisson process , 1980 .

[7]  A. Rényi Remarks on the Poisson process , 1967 .

[8]  Robert Maillardet,et al.  The basic structures of Voronoi and generalized Voronoi polygons , 1982, Journal of Applied Probability.

[9]  J. L. Finney,et al.  Random packings and the structure of simple liquids. I. The geometry of random close packing , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[10]  Maurice G. Kendall,et al.  A Course in the Geometry of n Dimensions , 1962 .

[11]  J. M. Hammersley,et al.  Stochastic Models for the Distribution of Particles in Space , 1972 .

[12]  G. Matheron Random Sets and Integral Geometry , 1976 .

[13]  E. Gilbert Random Subdivisions of Space into Crystals , 1962 .