Segmentation of human face using gradient-based approach

This paper describes a method for automatic segmentation of facial features such as eyebrows, eyes, nose, mouth and ears in color images. This work is an initial step for wide range of applications based on feature-based approaches, such as face recognition, lip-reading, gender estimation, facial expression analysis, etc. Human face can be characterized by its skin color and nearly elliptical shape. For this purpose, face detection is performed using color and shape information. Uniform illumination is assumed. No restrictions on glasses, make-up, beard, etc. are imposed. Facial features are extracted using the vertically and horizontally oriented gradient projections. The gradient of a minimum with respect to its neighbor maxima gives the boundaries of a facial feature. Each facial feature has a different horizontal characteristic. These characteristics are derived by extensive experimentation with many face images. Using fuzzy set theory, the similarity between the candidate and the feature characteristic under consideration is calculated. Gradient-based method is accompanied by the anthropometrical information, for robustness. Ear detection is performed using contour-based shape descriptors. This method detects the facial features and circumscribes each facial feature with the smallest rectangle possible. AR database is used for testing. The developed method is also suitable for real-time systems.

[1]  Wang Yan Human face detection and location in complex background , 2000 .

[2]  Takeo Kanade,et al.  Neural Network-Based Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[4]  Haibo Li,et al.  Automatic extraction of human facial features , 1996, Signal Process. Image Commun..

[5]  Thomas S. Huang,et al.  Frontal-view face detection , 1995, Other Conferences.