Overview of differential equations with non-standard growth

Abstract Differential equations with non-standard growth have been a very active field of investigation in recent years. In this survey we present an overview of the field, as well as several of the most important results. We consider both existence and regularity questions. Finally, we provide a comprehensive list of papers published to date.

[1]  Sergey Shmarev,et al.  A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions , 2005 .

[2]  Enrico Giusti,et al.  On the regularity of the minima of variational integrals , 1982 .

[3]  M. Galewski On a Dirichlet Problem with Generalized p(x)-Laplacian and Some Applications , 2007 .

[4]  Guowei Dai,et al.  Infinitely many positive solutions for a p(x)-Kirchhoff-type equation , 2009 .

[5]  Yunmei Chen,et al.  Variable Exponent, Linear Growth Functionals in Image Restoration , 2006, SIAM J. Appl. Math..

[6]  W. Allegretto,et al.  Form estimates for the p(x)-laplacean , 2007 .

[7]  P. Hästö,et al.  Mappings of Finite Distortion and PDE with Nonstandard Growth , 2009 .

[8]  E. Acerbi,et al.  Regularity results for parabolic systems related to a class of non-Newtonian fluids , 2004 .

[9]  J. M. Urbano,et al.  p(x)-Harmonic functions with unbounded exponent in a subdomain , 2008, 0809.2731.

[10]  Teemu Lukkari,et al.  Singular solutions of elliptic equations with nonstandard growth , 2009 .

[11]  J. Rossi,et al.  The behaviour of the p(x)-Laplacian eigenvalue problem as p(x)→∞ , 2010 .

[12]  J. Rossi,et al.  Large Solutions for the Laplacian With a Power Nonlinearity Given by a Variable Exponent , 2009 .

[13]  J. M. Urbano The Method of Intrinsic Scaling: A Systematic Approach to Regularity for Degenerate and Singular PDEs , 2008 .

[14]  J. Rodrigues,et al.  On stationary thermo-rheological viscous flows , 2006 .

[15]  Boundary Asymptotic and Uniqueness of Solution for a Problem with -Laplacian , 2008 .

[16]  Yongqiang Fu,et al.  Existence of solutions for p(x)-Laplacian problems on a bounded domain , 2005 .

[17]  S. Antontsev,et al.  Parabolic Equations with Anisotropic Nonstandard Growth Conditions , 2006 .

[18]  W. Orlicz,et al.  Über konjugierte Exponentenfolgen , 1931 .

[19]  Giuseppina Autuori,et al.  Asymptotic stability for anisotropic Kirchhoff systems , 2009 .

[20]  Yongqiang Fu,et al.  The principle of concentration compactness in Lp(x) spaces and its application , 2009 .

[21]  Xiaoyan Wang,et al.  On an open problem involving the p(x)-Laplacian—A further study on the multiplicity of weak solutions to p(x)-Laplacian equations , 2008 .

[22]  Guowei Dai,et al.  Existence of solutions for a p(x)-Kirchhoff-type equation , 2009 .

[23]  Xianling Fan Regularity of nonstandard Lagrangians f ( x, x ) , 1996 .

[24]  Xianling Fan,et al.  Multiplicity of Positive Solutions for a Class of Inhomogeneous Neumann Problems Involving the p(x)-Laplacian , 2009 .

[25]  M. Eleuteri Holder continuity results for a class of functionals with non standard growth , 2002 .

[26]  Yu. A. Alkhutov,et al.  Continuity at boundary points of solutions of quasilinear elliptic equations with a non-standard growth condition , 2004 .

[27]  Xianling Fan,et al.  Remarks on eigenvalue problems involving the p(x)-Laplacian , 2009 .

[28]  T. Lukkari Elliptic equations with nonstandard growth involving measures , 2008 .

[29]  J. Vázquez,et al.  An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations , 1995 .

[30]  Peter Hästö,et al.  Minimizers of the variable exponent, non-uniformly convex Dirichlet energy , 2008 .

[31]  A. El Hamidi,et al.  Existence results to elliptic systems with nonstandard growth conditions , 2004 .

[32]  Calderón–Zygmund estimates for higher order systems with p(x) growth , 2006, math/0610146.

[33]  Mikko Parviainen,et al.  Harnack's inequality for quasiminimizers with nonstandard growth conditions , 2008 .

[34]  R. Mashiyev,et al.  Existence of Solutions for a Class of Elliptic Systems in RN Involving the (p(x),q(x))-Laplacian , 2008 .

[35]  T. Lukkari,et al.  Global regularity and stability of solutions to elliptic equations with nonstandard growth , 2011 .

[36]  Zhuoqun Wu,et al.  Nonlinear Diffusion Equations , 2002 .

[37]  M. Mihăilescu On a class of nonlinear problems involving a p(x)-Laplace type operator , 2008 .

[38]  Fan Xianling,et al.  The regularity of Lagrangiansf(x, ξ)=254-01254-01254-01with Hölder exponents α(x) , 1996 .

[39]  Xianling Fan p(x)–Laplacian equations , 2003 .

[40]  Stacey Levine,et al.  An Adaptive Variational Model for Image Decomposition , 2005, EMMCVPR.

[41]  Paolo Marcellini Regularity and existence of solutions of elliptic equations with p,q-growth conditions , 1991 .

[42]  Giuseppe Mingione,et al.  Regularity of minima: An invitation to the dark side of the calculus of variations , 2006 .

[43]  J. Aubin,et al.  Applied Nonlinear Analysis , 1984 .

[44]  S. Antontsev,et al.  Elliptic equations and systems with nonstandard growth conditions: Existence, uniqueness and localization properties of solutions , 2006 .

[45]  Giuseppe Mingione,et al.  Hölder continuity of the gradient of p(x)-harmonic mappings , 1999 .

[46]  P. Hästö,et al.  Lebesgue and Sobolev Spaces with Variable Exponents , 2011 .

[47]  Shao-Gao Deng,et al.  Eigenvalues of the p(x)-Laplacian Steklov problem☆ , 2008 .

[48]  Yongqiang Fu The existence of solutions for elliptic systems with nonuniform growth , 2002 .

[49]  О гeльдеровой непрерывности $p(x)$-гармонических функций@@@Hölder continuity of $p(x)$-harmonic functions , 2005 .

[50]  On the stability of solutions for the p(x)-Laplacian equation and some applications to optimisation problems with state constraints , 2006 .

[51]  F. Nicolosi,et al.  Boundedness of solutions for an elliptic equation with non-standard growth , 2009 .

[52]  Mihai Mihailescu,et al.  On a nonhomogeneous quasilinear eigenvalue problem in sobolev spaces with variable exponent , 2006, math/0606156.

[53]  L. Diening,et al.  Strong Solutions for Generalized Newtonian Fluids , 2005 .

[54]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[55]  Aibin Zang,et al.  p(x)-Laplacian equations satisfying Cerami condition , 2008 .

[56]  Guowei Dai Infinitely many non-negative solutions for a Dirichlet problem involving p(x)-Laplacian , 2009 .

[57]  Qihu Zhang Existence of positive solutions for elliptic systems with nonstandard p(x)-growth conditions via sub-supersolution method , 2007 .

[58]  Existence of solutions for weighted p(t)-Laplacian system multi-point boundary value problems , 2009 .

[59]  Juan Pablo Pinasco,et al.  Blow-up for parabolic and hyperbolic problems with variable exponents , 2009 .

[60]  Xianling Fan,et al.  A Knobloch-type result for p(t)-Laplacian systems☆ , 2003 .

[61]  Luisa Consiglieri,et al.  Elliptic boundary value problems with nonstandard growth conditions , 2009 .

[62]  Guowei Dai Infinitely many solutions for a hemivariational inequality involving the p(x)-Laplacian ☆ , 2009 .

[63]  Peter A. Hästö On the existance of minimizers of the variable exponent Dirichlet energy integral , 2006 .

[64]  M. Eleuteri,et al.  Calderón–Zygmund type estimates for a class of obstacle problems with p(x) growth , 2010 .

[65]  Mihai Mihailescu,et al.  A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[66]  J. Rossi,et al.  Existence, Asymptotic Behavior and Uniqueness for Large Solutions to Δu = eq(x)u , 2009 .

[67]  Jingjing Liu,et al.  Existence of three solutions for a class of quasilinear elliptic systems involving the (p(x), q(x))-Laplacian , 2009 .

[68]  Qihu Zhang Existence of solutions for p(x)-Laplacian equations with singular coefficients in RN☆ , 2008 .

[69]  V. Zhikov,et al.  Higher integrability for parabolic equations of $p(x,t)$-Laplacian type , 2005, Advances in Differential Equations.

[70]  Xianling Fan,et al.  Existence and multiplicity of solutions for p(x)-Laplacian equations in RN , 2004 .

[72]  Xiaopin Liu,et al.  Existence of solutions and nonnegative solutions for weighted p(r)-Laplacian impulsive system multi-point boundary value problems☆ , 2009 .

[74]  Zhikov On Lavrentiev's Phenomenon. , 1995 .

[75]  Improved integrability of the gradients of solutions of elliptic equations with variable nonlinearity exponent , 2009 .

[76]  中野 秀五郎,et al.  Modulared semi-ordered linear spaces , 1950 .

[77]  T. Lukkari,et al.  An obstacle problem and superharmonic functions with nonstandard growth , 2007 .

[78]  P. Hästö,et al.  The Dirichlet Energy Integral on Intervals in Variable Exponent Sobolev Spaces , 2003 .

[79]  Mihai Mihailescu Elliptic problems in variable exponent spaces , 2006, Bulletin of the Australian Mathematical Society.

[80]  John L. Lewis On very weak solutions of certain elliptic systems , 1993 .

[81]  T. Lukkari,et al.  A curious equation involving the ∞-Laplacian , 2009, 0902.1771.

[82]  T. Lukkari,et al.  Wolff potential estimates for elliptic equations with nonstandard growth and applications , 2010 .

[83]  Giuseppe Mingione,et al.  Regularity Results for a Class of Functionals with Non-Standard Growth , 2001 .

[84]  E. Acerbi,et al.  Regularity results for a class of quasiconvex functionals with nonstandard growth , 2001 .

[85]  Boundary Asymptotic and Uniqueness of Solution for a Problem with px -Laplacian , 2008 .

[86]  Peter Hästö,et al.  The Dirichlet Energy Integral and Variable Exponent Sobolev Spaces with Zero Boundary Values , 2006 .

[87]  Driss Meskine,et al.  New diffusion models in image processing , 2008, Comput. Math. Appl..

[88]  Qihu Zhang Oscillatory Property of Solutions for-Laplacian Equations , 2007 .

[89]  Xianling Fan,et al.  Nodal solutions of p(x)-Laplacian equations , 2007 .

[90]  N. Wolanski,et al.  A free boundary problem for the p(x)-Laplacian , 2009, 0902.3216.

[91]  Vicentiu D. Rădulescu,et al.  Continuous spectrum for a class of nonhomogeneous differential operators , 2007, 0706.4045.

[92]  Julian Musielak,et al.  Orlicz Spaces and Modular Spaces , 1983 .

[93]  L. Diening,et al.  Calderón-Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot)}$ and problems related to fluid dynamics , 2003 .

[94]  Xianling Fan Eigenvalues of the p(x)-Laplacian Neumann problems☆ , 2007 .

[95]  Jinghua Yao Solutions for Neumann boundary value problems involving p(x)-Laplace operators , 2008 .

[96]  E. DiBenedetto Degenerate Parabolic Equations , 1993 .

[97]  Giuseppe Mingione,et al.  Gradient estimates for the p (x)-Laplacean system , 2005 .

[98]  Weigao Ge,et al.  Existence and multiplicity of solutions for a Neumann problem involving the p(x)-Laplace operator , 2007 .

[99]  M. Galewski On a Dirichlet problem with p(x)-Laplacian , 2008 .

[100]  Qihu Zhang,et al.  Existence of positive solutions for a class of p(x)-Laplacian systems ✩ , 2007 .

[101]  Peter Hästö,et al.  Harnack's inequality for p(⋅)-harmonic functions with unbounded exponent p , 2009 .

[102]  K. Kurata,et al.  Compact embedding from W01,2(Ω) to Lq(x)(Ω) and its application to nonlinear elliptic boundary value problem with variable critical exponent , 2008 .

[103]  T. Iwaniec,et al.  Weak minima of variational integrals. , 1994 .

[104]  D. Mucci,et al.  Integral representation and Γ-convergence of variational integrals with p(x)-growth , 2002 .

[105]  P. Hästö,et al.  Boundedness of solutions of the non-uniformly convex, non-standard growth Laplacian , 2011 .

[106]  Guowei Dai Infinitely many solutions for a p(x)-Laplacian equation in RN☆ , 2009 .

[107]  Yongqiang Fu,et al.  A multiplicity result for p(x)-Laplacian problem in RN , 2009 .

[108]  Xianling Fan,et al.  Global C1,α regularity for variable exponent elliptic equations in divergence form , 2007 .

[109]  John L. Lewis,et al.  Very weak solutions of parabolic systems ofp-Laplacian type , 2002 .

[110]  M. Eleuteri,et al.  A Hölder continuity result for a class of obstacle problems under non standard growth conditions , 2011 .

[111]  Erik M. Bollt,et al.  Graduated adaptive image denoising: local compromise between total variation and isotropic diffusion , 2009, Adv. Comput. Math..

[112]  On the C1,γ(Ω¯)∩W2,2(Ω) regularity for a class of electro-rheological fluids , 2009 .

[113]  Pablo Pedregal,et al.  Some Variational Problems , 1997 .

[114]  Shao-Gao Deng,et al.  A local mountain pass theorem and applications to a double perturbed p(x)-Laplacian equations , 2009, Appl. Math. Comput..

[115]  Xianling Fan p(x)-Laplacian equations in RN with periodic data and nonperiodic perturbations , 2008 .

[116]  M. Růžička Flow of Shear Dependent Electrorheological Fluids: Unsteady Space Periodic Case , 2002 .

[118]  Dun Zhao,et al.  The quasi-minimizer of integral functionals with m ( x ) growth conditions , 2000 .

[119]  Limits as p(x)→∞p(x)→∞ of p(x)p(x)-harmonic functions , 2010 .

[120]  Chao Ji Perturbation for a p(x)-Laplacian equation involving oscillating nonlinearities in RN☆ , 2008 .

[121]  T. Lukkari,et al.  Unbounded Supersolutions of Nonlinear Equations with Nonstandard Growth , 2006 .

[122]  Qihu Zhang Boundary Blow-Up Solutions to -Laplacian Equations with Exponential Nonlinearities , 2007 .

[123]  Qihu Zhang Existence and Asymptotic Behavior of Positive Solutions to-Laplacian Equations with Singular Nonlinearities , 2007 .

[124]  Xianling Fan,et al.  Existence and multiplicity of solutions for p(x)p(x)-Laplacian equations in RNRN☆ , 2004 .

[125]  P. Harjulehto,et al.  FINE TOPOLOGY OF VARIABLE EXPONENT ENERGY SUPERMINIMIZERS , 2008 .

[126]  M. Ruzicka,et al.  Electrorheological Fluids: Modeling and Mathematical Theory , 2000 .

[127]  Qihu Zhang,et al.  Existence and asymptotic behavior of positive solutions for variable exponent elliptic systems , 2009 .

[128]  Xiaopin Liu,et al.  Existence of multiple solutions for weighted p(r)-Laplacian equation Dirichlet problems☆ , 2009 .

[129]  Mengrui Xu,et al.  Hölder Continuity of Weak Solutions for Parabolic Equations with Nonstandard Growth Conditions , 2006 .

[130]  J. Rodrigues,et al.  The obstacle problem for nonlinear elliptic equations with variable growth and L1-data , 2008, 0802.0378.

[131]  M. Eleuteri,et al.  Regularity results for a class of obstacle problems under nonstandard growth conditions , 2008 .

[132]  Giuseppina Autuori,et al.  Global Nonexistence for Nonlinear Kirchhoff Systems , 2010 .

[133]  Nikolaos S. Papageorgiou,et al.  A MULTIPLICITY THEOREM FOR A VARIABLE EXPONENT DIRICHLET PROBLEM , 2008, Glasgow Mathematical Journal.

[134]  J. McLeod Nonlinear Diffusion Equations. , 1985 .

[135]  Higher integrability of very weak solutions of systems of p(x)-Laplacean type , 2007 .

[136]  P. Zhao,et al.  Existence of positive solutions for p(x)-Laplacian equations in unbounded domains , 2008 .

[137]  Qiao Liu Existence of three solutions for p(x)-Laplacian equations , 2008 .

[138]  Michel Ménard,et al.  Nonstandard diffusion in image restoration and decomposition , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[139]  V. Zhikov,et al.  AVERAGING OF FUNCTIONALS OF THE CALCULUS OF VARIATIONS AND ELASTICITY THEORY , 1987 .

[140]  J. Heinonen,et al.  Nonlinear Potential Theory of Degenerate Elliptic Equations , 1993 .

[141]  Dun Zhao,et al.  A class of De Giorgi type and Hölder continuity , 1999 .

[142]  J. Habermann Partial regularity for minima of higher order functionals with p(x)-growth , 2006, math/0610145.

[143]  Qihu Zhang Existence and asymptotic behavior of blow-up solutions to a class of p(x)-Laplacian problems☆ , 2007 .

[144]  Xianling Fan,et al.  Hartman-type results for p(t) -Laplacian systems , 2003 .

[145]  Xiaopin Liu,et al.  Existence of solutions for weighted p(r)-Laplacian impulsive system periodic-like boundary value problems☆ , 2009 .

[146]  M. Mihăilescu EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR AN ELLIPTIC EQUATION WITH $p(x)$-GROWTH CONDITIONS , 2006, Glasgow Mathematical Journal.

[147]  Vicentiu D. Rădulescu,et al.  Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent , 2008 .

[148]  Maria-Magdalena Boureanu Existence of solutions for an elliptic equation involving the -Laplace operator. , 2006 .

[149]  L. Diening,et al.  C1,α-regularity for electrorheological fluids in two dimensions , 2007 .

[150]  Xianling Fan,et al.  Remarks on Ricceri’s variational principle and applications to the p(x)-Laplacian equations , 2007 .

[151]  Giuseppe Mingione,et al.  Regularity Results for Stationary Electro-Rheological Fluids , 2002 .

[152]  U. Gianazza,et al.  Harnack estimates for quasi-linear degenerate parabolic differential equations , 2008 .

[153]  Qihu Zhang,et al.  Eigenvalues of p(x)-Laplacian Dirichlet problem , 2005 .

[154]  T. Dinu Nonlinear eigenvalue problems in Sobolev spaces with variable exponent , 2005, math/0511167.

[155]  R. Mashiyev,et al.  Existence of Solutions for a Class of Elliptic Systems in Involving the -Laplacian , 2008 .

[156]  Yukun An,et al.  Existence and multiplicity of solutions for elliptic systems with nonstandard growth condition in RN , 2008 .

[157]  Jan Malý,et al.  Fine Regularity of Solutions of Elliptic Partial Differential Equations , 1997 .

[158]  Qihu Zhang,et al.  On the boundary blow-up solutions of p(x)-Laplacian equations with singular coefficient , 2009 .

[159]  On the existence and stability of solutions for Dirichlet problem with p(x)-Laplacian , 2007 .

[160]  Dušan D. Repovš,et al.  On a non-homogeneous eigenvalue problem involving a potential: an Orlicz-Sobolev space setting , 2016, 1608.07062.

[161]  Qihu Zhang,et al.  Existence of solutions for p(x) -Laplacian dirichlet problem , 2003 .

[162]  P. Pucci,et al.  Maximum principles for anisotropic elliptic inequalities , 2009 .

[163]  R. Yuan,et al.  Existence of periodic solutions for p(t)-Laplacian systems , 2009 .

[164]  J. M. Urbano,et al.  Intrinsic scaling for pde's with an exponential nonlinearity , 2006 .

[165]  C. O. Alves Existence of solution for a degenerate p(x)-Laplacian equation in RN , 2008 .

[166]  M. Bendahmane,et al.  Renormalized solutions for nonlinear elliptic equations with variable exponents and L1 data , 2009 .

[167]  A constrained minimization problem involving the p(x)-Laplacian in RN , 2008 .

[168]  M. Mihăilescu,et al.  EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR A NEUMANN PROBLEM INVOLVING VARIABLE EXPONENT GROWTH CONDITIONS , 2008, Glasgow Mathematical Journal.

[169]  S. Samko On a progress in the theory of lebesgue spaces with variable exponent: maximal and singular operators , 2005 .

[170]  A. Coscia,et al.  Hölder continuity of minimizers of functionals with variable growth exponent , 1997 .