A New Competitive Implementation of the Electromagnetism-Like Algorithm for Global Optimization

The Electromagnetism-like (EM) algorithm is a population-based stochastic global optimization algorithm that uses an attraction-repulsion mechanism to move sample points towards the optimal. In this paper, an implementation of the EM algorithm in the Matlab environment as a useful function for practitioners and for those who want to experiment a new global optimization solver is proposed. A set of benchmark problems are solved in order to evaluate the performance of the implemented method when compared with other stochastic methods available in the Matlab environment. The results confirm that our implementation is a competitive alternative both in term of numerical results and performance.Finally, a case study based on a parameter estimation problem of a biology system shows that the EM implementation could be applied with promising results in the control optimization area.

[1]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[2]  K. Schittkowski Parameter estimation in systems of nonlinear equations , 1994 .

[3]  D. E. Goldberg,et al.  Genetic Algorithms in Search, Optimization & Machine Learning , 1989 .

[4]  Andrej Pázman,et al.  Nonlinear Regression , 2019, Handbook of Regression Analysis With Applications in R.

[5]  Julio R. Banga,et al.  New heuristics for global optimization of complex bioprocesses , 2008 .

[6]  Ana Maria A. C. Rocha,et al.  Modified movement force vector in an electromagnetism-like mechanism for global optimization , 2009, Optim. Methods Softw..

[7]  Julio R. Banga,et al.  A cooperative strategy for parameter estimation in large scale systems biology models , 2012, BMC Systems Biology.

[8]  R. Kass Nonlinear Regression Analysis and its Applications , 1990 .

[9]  C. Floudas,et al.  Global Optimization for the Parameter Estimation of Differential-Algebraic Systems , 2000 .

[10]  Shu-Cherng Fang,et al.  An Electromagnetism-like Mechanism for Global Optimization , 2003, J. Glob. Optim..

[11]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[12]  Julio R. Banga,et al.  Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems , 2006, BMC Bioinformatics.

[13]  Mustafa Khammash,et al.  Parameter Estimation and Model Selection in Computational Biology , 2010, PLoS Comput. Biol..

[14]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[15]  M. Stadtherr,et al.  Deterministic Global Optimization for Parameter Estimation of Dynamic Systems , 2006 .

[16]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[17]  Choujun Zhan,et al.  Parameter estimation in systems biology models using spline approximation , 2011, BMC Systems Biology.

[18]  J. Zhuang,et al.  A computational study on different penalty approaches for solving constrained global optimization problems with the electromagnetism-like method , 2014 .

[19]  K O Elliston,et al.  Applying a causal framework to system modeling. , 2007, Ernst Schering Research Foundation workshop.

[20]  Jonathan M. Garibaldi,et al.  Parameter Estimation Using Metaheuristics in Systems Biology: A Comprehensive Review , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[21]  Edite M. G. P. Fernandes,et al.  Numerical study of augmented Lagrangian algorithms for constrained global optimization , 2011 .

[22]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[23]  Robert E. Fuguitt,et al.  Rate of the Thermal Isomerization of α-Pinene in the Liquid Phase1 , 1947 .

[24]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[25]  Julio R. Banga,et al.  Scatter search for chemical and bio-process optimization , 2007, J. Glob. Optim..

[26]  Ana Maria A. C. Rocha,et al.  Performance Profile Assessment of Electromagnetism‐like Algorithms for Global Optimization , 2008 .

[27]  Shu-Cherng Fang,et al.  On the Convergence of a Population-Based Global Optimization Algorithm , 2004, J. Glob. Optim..

[28]  Hong Sun,et al.  Smolign: A Spatial Motifs-Based Protein Multiple Structural Alignment Method , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[29]  G. Seber,et al.  Nonlinear Regression: Seber/Nonlinear Regression , 2005 .

[30]  Monika Lessl,et al.  Ernst Schering Research Foundation Workshop , 2010 .

[31]  D. Noble,et al.  Systems biology and the virtual physiological human , 2009, Molecular systems biology.

[32]  Neria Quimica,et al.  NEW HEURISTICS FOR GLOBAL OPTIMIZATION OF COMPLEX BIOPROCESSES , 2008 .

[33]  Josef Stoer,et al.  Numerische Mathematik 1 , 1989 .

[34]  Lester Ingber,et al.  Simulated annealing: Practice versus theory , 1993 .

[35]  John F. MacGregor,et al.  ASQC Chemical Division Technical Conference 1971 Prize Winning Paper Some Problems Associated with the Analysis of Multiresponse Data , 1973 .

[36]  Marco Dorigo,et al.  Distributed Optimization by Ant Colonies , 1992 .