THE GROUND-BASED H-, K-, AND L-BAND ABSOLUTE EMISSION SPECTRA OF HD 209458b

Here we explore the capabilities of NASA's 3.0 meter Infrared Telescope Facility (IRTF) and SpeX spectrometer and the 5.08 meter Hale telescope with the TripleSpec spectrometer with near-infrared H, K, and L-band measurements of HD 209458b's secondary eclipse. Our IRTF/SpeX data are the first absolute L-band spectroscopic emission measurements of any exoplanet other than the hot Jupiter HD 189733b. Previous measurements of HD 189733b's L-band indicate bright emission hypothesized to result from non-LTE CH$_{4}$ $\nu_{3}$ fluorescence. We do not detect a similar bright 3.3 $\mu$m feature to ~3$\sigma$, suggesting that fluorescence does not need to be invoked to explain HD 209458b's L-band measurements. The validity of our observation and reduction techniques, which decrease the flux variance by up to 2.8 orders of magnitude, is reinforced by 1$\sigma$ agreement with existent $Hubble$/NICMOS and $Spitzer$/IRAC1 observations which overlap the H, K, and L-bands, suggesting that both IRTF/SpeX and Palomar/TripleSpec can measure an exoplanet's emission with high precision.

[1]  Robert T. Zellem,et al.  THE 4.5 μm FULL-ORBIT PHASE CURVE OF THE HOT JUPITER HD 209458b , 2014, 1405.5923.

[2]  David Charbonneau,et al.  Hubble Space Telescope Time-Series Photometry of the Transiting Planet of HD?209458 , 2001 .

[3]  T. Geballe,et al.  Three-Micrometer CH4 Line Emission from Titan's High-Altitude Atmosphere , 2000 .

[4]  Gautam Vasisht,et al.  A ground-based near-infrared emission spectrum of the exoplanet HD 189733b , 2010, Nature.

[5]  Jonathan Tennyson,et al.  BLIND EXTRACTION OF AN EXOPLANETARY SPECTRUM THROUGH INDEPENDENT COMPONENT ANALYSIS , 2013, 1301.4041.

[6]  R. Kuschnig,et al.  WATER, METHANE, AND CARBON DIOXIDE PRESENT IN THE DAYSIDE SPECTRUM OF THE EXOPLANET HD 209458b , 2009, 0908.4010.

[7]  David Charbonneau,et al.  The 3.6-8.0 μm Broadband Emission Spectrum of HD 209458b: Evidence for an Atmospheric Temperature Inversion , 2007, 0709.3984.

[8]  John T. Rayner,et al.  Spextool: A Spectral Extraction Package for SpeX, a 0.8–5.5 Micron Cross‐Dispersed Spectrograph , 2004 .

[9]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[10]  Drake Deming,et al.  Spitzer/MIPS 24 μm OBSERVATIONS OF HD 209458b: THREE ECLIPSES, TWO AND A HALF TRANSITS, AND A PHASE CURVE CORRUPTED BY INSTRUMENTAL SENSITIVITY VARIATIONS , 2012, 1202.1562.

[11]  C. Griffith,et al.  Disentangling degenerate solutions from primary transit and secondary eclipse spectroscopy of exoplanets , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  I. P. Waldmann,et al.  GROUND-BASED NEAR-INFRARED EMISSION SPECTROSCOPY OF HD 189733B , 2011, 1104.0570.

[13]  Mark R. Swain,et al.  Selective principal component extraction and reconstruction: a novel method for ground based exoplanet spectroscopy , 2010, 1009.2473.

[14]  Drake Deming,et al.  Infrared Observations during the Secondary Eclipse of HD 209458b. II. Strong Limits on the Infrared Spectrum Near 2.2 μm , 2003, astro-ph/0307297.

[15]  Mark R. Swain,et al.  0.94–2.42 μm GROUND-BASED TRANSMISSION SPECTRA OF THE HOT JUPITER HD-189733b , 2013 .

[16]  E. Agol,et al.  THE STATISTICS OF ALBEDO AND HEAT RECIRCULATION ON HOT EXOPLANETS , 2009, 1001.0012.

[17]  Ingo P. Waldmann,et al.  OF “COCKTAIL PARTIES” AND EXOPLANETS , 2011, 1106.1989.

[18]  John Southworth,et al.  Homogeneous studies of transiting extrasolar planets - III. Additional planets and stellar models , 2010, 1006.4443.

[19]  John T. Rayner,et al.  SpeX: A Medium‐Resolution 0.8–5.5 Micron Spectrograph and Imager for the NASA Infrared Telescope Facility , 2003 .

[20]  T. Guillot,et al.  A Nongray Theory of Extrasolar Giant Planets and Brown Dwarfs , 1997, astro-ph/9705201.

[21]  I. P. Waldmann,et al.  ON SIGNALS FAINT AND SPARSE: THE ACICA ALGORITHM FOR BLIND DE-TRENDING OF EXOPLANETARY TRANSITS WITH LOW SIGNAL-TO-NOISE , 2013, 1302.6714.

[22]  R. Perna,et al.  THE EFFECTS OF IRRADIATION ON HOT JOVIAN ATMOSPHERES: HEAT REDISTRIBUTION AND ENERGY DISSIPATION , 2012, 1201.5391.

[23]  M. Holman,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 IMPROVED PARAMETERS FOR EXTRASOLAR TRANSITING PLANETS , 2008 .

[24]  Aisey M Andel ANALYTIC LIGHTCURVES FOR PLANETARY TRANSIT SEARCHES , 2002 .

[25]  A. Showman,et al.  ATMOSPHERIC HEAT REDISTRIBUTION ON HOT JUPITERS , 2013, 1306.4673.

[26]  David Charbonneau,et al.  ATMOSPHERIC CIRCULATION OF HOT JUPITERS: COUPLED RADIATIVE-DYNAMICAL GENERAL CIRCULATION MODEL SIMULATIONS OF HD 189733b and HD 209458b , 2008, 0809.2089.

[27]  S. Aigrain,et al.  A Gaussian process framework for modelling instrumental systematics: application to transmission spectroscopy , 2011, 1109.3251.

[28]  C. Surace,et al.  The Universe as Seen by ISO , 1999 .

[29]  C. Sotin,et al.  Observations with the Visual and Infrared Mapping Spectrometer (VIMS) during Cassini's flyby of Jupiter , 2003 .

[30]  R. Akeson,et al.  The Mid-Infrared Spectrum of the Transiting Exoplanet HD 209458b , 2007, astro-ph/0702593.

[31]  H Germany,et al.  A Method of Correcting Near‐Infrared Spectra for Telluric Absorption , 2002, astro-ph/0211255.

[32]  Nikole K. Lewis,et al.  DISEQUILIBRIUM CARBON, OXYGEN, AND NITROGEN CHEMISTRY IN THE ATMOSPHERES OF HD 189733b AND HD 209458b , 2011, 1102.0063.

[33]  Travis Barman,et al.  GROUND-BASED, NEAR-INFRARED EXOSPECTROSCOPY. II. TENTATIVE DETECTION OF EMISSION FROM THE EXTREMELY HOT JUPITER WASP-12b , 2012, 1201.1023.