Monte Carlo modelling of the spectral reflectance of the human eye.

The interpretation of in vivo spectral reflectance measurements of the ocular fundus requires an accurate model of radiation transport within the eye. As well as considering the scattering and absorption processes, it is also necessary to account for appropriate histological variation. This variation results in experimentally measured spectra which vary, both with position in the eye, and between individuals. In this paper the results of a Monte Carlo simulation are presented. Three histological variables are considered: the RPE melanin concentration, the choriodal haemoglobin concentration and the choroidal melanin concentration. By considering these three variables, it is possible to generate model spectra which agree well with in vivo experimental measurements of the nasal fundus. The model has implications for the problem of extracting histological parameters from spectral reflectance measurements. These implications are discussed and a novel approach to interpretation of images of the ocular fundus suggested.

[1]  W. T. Ham,et al.  The relative absorption of thermal energy in retina and choroid. , 1962, Investigative ophthalmology.

[2]  A. Welch,et al.  A review of the optical properties of biological tissues , 1990 .

[3]  Dietrich Schweitzer,et al.  Quantitative reflection spectroscopy at the human ocular fundus. , 2002, Physics in medicine and biology.

[4]  R. Anderson,et al.  The optics of human skin. , 1981, The Journal of investigative dermatology.

[5]  W. Hunold,et al.  Spectrophotometric Determination of the Melanin Pigmentation of the Human Ocular Fundus in vivo , 1974 .

[6]  F. Delori,et al.  Reflectance and curvature of the inner limiting membrane at the foveola. , 1999, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  David B. Fogel,et al.  An introduction to simulated evolutionary optimization , 1994, IEEE Trans. Neural Networks.

[8]  V C Smith,et al.  Aging of the human lens. , 1987, Applied optics.

[9]  E. Claridge,et al.  Spectrophotometric intracutaneous analysis: a new technique for imaging pigmented skin lesions , 2002, The British journal of dermatology.

[10]  D. Van Norren,et al.  Spectral reflectance of the human eye , 1986, Vision Research.

[11]  D. Schweitzer,et al.  Imaging spectrometry in ophthalmology--principle and applications in microcirculation and in investigation of pigments. , 1996, Ophthalmic research.

[12]  F. Delori Noninvasive technique for oximetry of blood in retinal vessels. , 1988, Applied optics.

[13]  A. Snyder,et al.  The Stiles-Crawford effect--explanation and consequences. , 1973, Vision research.

[14]  Xin Yao,et al.  Fast Evolution Strategies , 1997, Evolutionary Programming.

[15]  A Roggan,et al.  Optical properties of ocular fundus tissues--an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation. , 1995, Physics in medicine and biology.

[16]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[17]  A. Roggan,et al.  Measurements of optical tissue properties using integrating sphere technique , 1993, Other Conferences.

[18]  S. A. Prahl,et al.  A Monte Carlo model of light propagation in tissue , 1989, Other Conferences.

[19]  R. Knighton,et al.  Quantitative reflectometry of the ocular fundus , 1995 .

[20]  Reginald Birngruber,et al.  Quantifizierung der Wellenlängenabhängigkeit laserinduzierter Aderhauteffekte , 1989 .

[21]  Dietrich Schweitzer,et al.  Light paths in retinal vessel oximetry , 2001, IEEE Transactions on Biomedical Engineering.

[22]  Ela Claridge,et al.  Developing a predictive model of human skin coloring , 1996, Medical Imaging.

[23]  J. Weiter,et al.  Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes. , 1986, Investigative ophthalmology & visual science.

[24]  H.J.C.M. Sterenborg,et al.  Skin optics , 1989, IEEE Transactions on Biomedical Engineering.

[25]  N Bülow LIGHT SCATTERING BY PIGMENT EPITHELIUM GRANULES IN THE HUMAN RETINA , 1968, Acta ophthalmologica.

[26]  Ela Claridge,et al.  Noninvasive Skin Imaging , 1997, IPMI.

[27]  Samuel G. Jacobson,et al.  Specular Reflection From The Surface Of The Retina , 1989, Photonics West - Lasers and Applications in Science and Engineering.

[28]  W Hunold,et al.  [Spectrophotometric determination of melanin pigmentation of the human fundus oculi]. , 1974, Bericht uber die Zusammenkunft. Deutsche Ophthalmologische Gesellschaft.

[29]  P. Kubelka Ein Beitrag zur Optik der Farban striche , 1931 .

[30]  L. C. Henyey,et al.  Diffuse radiation in the Galaxy , 1940 .

[31]  F. Delori,et al.  Spectral reflectance of the human ocular fundus. , 1989, Applied optics.

[32]  B. Horecker THE ABSORPTION SPECTRA OF HEMOGLOBIN AND ITS DERIVATIVES IN THE VISIBLE AND NEAR INFRA-RED REGIONS , 1943 .

[33]  SchwefelHans-Paul,et al.  An overview of evolutionary algorithms for parameter optimization , 1993 .

[34]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[35]  D. Norren,et al.  The Pathways of Light Measured in Fundus Reflectometry , 1996, Vision Research.

[36]  W. T. Ham Remarks on fundus reflectance , 1975, Vision Research.

[37]  D. Van Norren,et al.  Intensity and polarization of light scattered at small angles from the human fovea , 1986, Vision Research.

[39]  J. J. Vos,et al.  Spectral transmission of the human ocular media. , 1974, Vision research.

[40]  Kenneth R. Alexander,et al.  Human macular pigment assessed by imaging fundus reflectometry , 1989, Vision Research.

[41]  H. Haberman,et al.  A qualitative study of the melanins from blue and brown human eyes. , 1982, Experimental eye research.