Potent Tetrahydroquinolone Eliminates Apicomplexan Parasites

Apicomplexan infections cause substantial morbidity and mortality, worldwide. New, improved therapies are needed. Herein, we create a next generation anti-apicomplexan lead compound, JAG21, a tetrahydroquinolone, with increased sp3-character to improve parasite selectivity. Relative to other cytochrome b inhibitors, JAG21 has improved solubility and ADMET properties, without need for pro-drug. JAG21 significantly reduces Toxoplasma gondii tachyzoites and encysted bradyzoites in vitro, and in primary and established chronic murine infections. Moreover, JAG21 treatment leads to 100% survival. Further, JAG21 is efficacious against drug-resistant Plasmodium falciparum in vitro. Causal prophylaxis and radical cure are achieved after P. berghei sporozoite infection with oral administration of a single dose (2.5 mg/kg) or 3 days treatment at reduced dose (0.625 mg/kg/day), eliminating parasitemia, and leading to 100% survival. Enzymatic, binding, and co-crystallography/pharmacophore studies demonstrate selectivity for apicomplexan relative to mammalian enzymes. JAG21 has significant promise as a pre-clinical candidate for prevention, treatment, and cure of toxoplasmosis and malaria.

[1]  Kristian E. Swearingen,et al.  Transcriptome and histone epigenome of Plasmodium vivax salivary-gland sporozoites point to tight regulatory control and mechanisms for liver-stage differentiation in relapsing malaria. , 2019, International journal for parasitology.

[2]  G. Koh,et al.  Tafenoquine versus Primaquine to Prevent Relapse of Plasmodium vivax Malaria. Reply. , 2019, The New England journal of medicine.

[3]  W. Monteiro,et al.  Single-Dose Tafenoquine to Prevent Relapse of Plasmodium vivax Malaria , 2019, The New England journal of medicine.

[4]  Xiaocong Li,et al.  Comparative studies of Toxoplasma gondii transcriptomes: insights into stage conversion based on gene expression profiling and alternative splicing , 2018, Parasites & Vectors.

[5]  Shaun Rawson,et al.  X-ray and cryo-EM structures of inhibitor-bound cytochrome bc 1 complexes for structure-based drug discovery , 2018, IUCrJ.

[6]  W. de Souza,et al.  Toxoplasma gondii reorganizes the host cell architecture during spontaneous cyst formation in vitro , 2017, Parasitology.

[7]  R. F. Campbell,et al.  Alkoxycarbonate Ester Prodrugs of Preclinical Drug Candidate ELQ-300 for Prophylaxis and Treatment of Malaria. , 2017, ACS infectious diseases.

[8]  L. Hood,et al.  Toxoplasma Modulates Signature Pathways of Human Epilepsy, Neurodegeneration & Cancer , 2017, Scientific Reports.

[9]  Kristian E. Swearingen,et al.  Transcriptome and histone epigenome of Plasmodium vivax salivary-gland sporozoites point to tight regulatory control and potential mechanisms for liver-stage differentiation , 2017, bioRxiv.

[10]  A. Biton,et al.  Laser capture microdissection enables transcriptomic analysis of dividing and quiescent liver stages of Plasmodium relapsing species , 2017, Cellular microbiology.

[11]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[12]  J. Jakana,et al.  Asymmetric cryo-EM structure of the canonical Allolevivirus Qβ reveals a single maturation protein and the genomic ssRNA in situ , 2016, Proceedings of the National Academy of Sciences.

[13]  A. Rzhetsky,et al.  Understanding Toxoplasmosis in the United States Through "Large Data" Analyses. , 2016, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[14]  L. Hood,et al.  New paradigms for understanding and step changes in treating active and chronic, persistent apicomplexan infections , 2016, Scientific Reports.

[15]  J. Rubio,et al.  Tafenoquine treatment of Plasmodium vivax malaria: suggestive evidence that CYP2D6 reduced metabolism is not associated with relapse in the Phase 2b DETECTIVE trial , 2016, Malaria Journal.

[16]  A. Sinai,et al.  Novel Approaches Reveal that Toxoplasma gondii Bradyzoites within Tissue Cysts Are Dynamic and Replicating Entities In Vivo , 2015, mBio.

[17]  David M. Shackleford,et al.  ELQ-300 Prodrugs for Enhanced Delivery and Single-Dose Cure of Malaria , 2015, Antimicrobial Agents and Chemotherapy.

[18]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[19]  S. Antonyuk,et al.  Antimalarial 4(1H)-pyridones bind to the Qi site of cytochrome bc1 , 2015, Proceedings of the National Academy of Sciences.

[20]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[21]  Gary D Bader,et al.  Biological Network Exploration with Cytoscape 3 , 2014, Current protocols in bioinformatics.

[22]  Paul Theodor Pyl,et al.  HTSeq – A Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[23]  Kami Kim,et al.  Gene Set Enrichment Analysis (GSEA) of Toxoplasma gondii expression datasets links cell cycle progression and the bradyzoite developmental program , 2014, BMC Genomics.

[24]  D. Caridha,et al.  Tafenoquine and NPC-1161B require CYP 2D metabolism for anti-malarial activity: implications for the 8-aminoquinoline class of anti-malarial compounds , 2014, Malaria Journal.

[25]  P. Mastroiacovo,et al.  The global burden of congenital toxoplasmosis: a systematic review. , 2013, Bulletin of the World Health Organization.

[26]  D. Caridha,et al.  The metabolism of primaquine to its active metabolite is dependent on CYP 2D6 , 2013, Malaria Journal.

[27]  W. de Souza,et al.  Spontaneous cystogenesis in vitro of a Brazilian strain of Toxoplasma gondii. , 2013, Parasitology international.

[28]  M. Abrahamowicz,et al.  Congenital toxoplasma infection: monthly prenatal screening decreases transmission rate and improves clinical outcome at age 3 years. , 2013, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[29]  C. Roberts,et al.  Salicylanilide inhibitors of Toxoplasma gondii. , 2012, Journal of medicinal chemistry.

[30]  R. Yolken,et al.  Endochin-like quinolones are highly efficacious against acute and latent experimental toxoplasmosis , 2012, Proceedings of the National Academy of Sciences.

[31]  Garib N. Murshudov,et al.  JLigand: a graphical tool for the CCP4 template-restraint library , 2012, Acta crystallographica. Section D, Biological crystallography.

[32]  D. Rice,et al.  Novel N-Benzoyl-2-Hydroxybenzamide Disrupts Unique Parasite Secretory Pathway , 2012, Antimicrobial Agents and Chemotherapy.

[33]  Roman A. Laskowski,et al.  LigPlot+: Multiple Ligand-Protein Interaction Diagrams for Drug Discovery , 2011, J. Chem. Inf. Model..

[34]  R. McLeod,et al.  Clinical Manifestations of Ocular Toxoplasmosis , 2011, Ocular immunology and inflammation.

[35]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[36]  Owen Johnson,et al.  iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM , 2011, Acta crystallographica. Section D, Biological crystallography.

[37]  Philip R. Evans,et al.  An introduction to data reduction: space-group determination, scaling and intensity statistics , 2011, Acta crystallographica. Section D, Biological crystallography.

[38]  Michael S. Behnke,et al.  T. gondii RP Promoters & Knockdown Reveal Molecular Pathways Associated with Proliferation and Cell-Cycle Arrest , 2010, PloS one.

[39]  Annie F Kuo,et al.  Longitudinal study of new eye lesions in children with toxoplasmosis who were not treated during the first year of life. , 2008, American journal of ophthalmology.

[40]  Peter G. Schultz,et al.  In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen , 2008, Proceedings of the National Academy of Sciences.

[41]  L. Gerena,et al.  Assessment and Continued Validation of the Malaria SYBR Green I-Based Fluorescence Assay for Use in Malaria Drug Screening , 2007, Antimicrobial Agents and Chemotherapy.

[42]  D. Rice,et al.  Studies of Toxoplasma gondii and Plasmodium falciparum enoyl acyl carrier protein reductase and implications for the development of antiparasitic agents. , 2007 .

[43]  D. Steindler,et al.  Derivation and large-scale expansion of multipotent astroglial neural progenitors from adult human brain , 2006, Development.

[44]  R. McLeod,et al.  Severe sulfadiazine hypersensitivity in a child with reactivated congenital toxoplasmic chorioretinitis. , 2006, The Pediatric infectious disease journal.

[45]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  W. Trager,et al.  Human Malaria Parasites in Continuous Culture , 2005 .

[47]  G. Brasseur,et al.  Human Disease-related Mutations in Cytochrome b Studied in Yeast* , 2004, Journal of Biological Chemistry.

[48]  Catherine Li,et al.  High-Throughput Growth Assay for Toxoplasma gondii Using Yellow Fluorescent Protein , 2003, Antimicrobial Agents and Chemotherapy.

[49]  A E Vercesi,et al.  Respiration and Oxidative Phosphorylation in the Apicomplexan Parasite Toxoplasma gondii * , 1998, The Journal of Biological Chemistry.

[50]  M. Nasr,et al.  Two 2-Hydroxy-3-Alkyl-1,4-Naphthoquinones with In Vitro and In Vivo Activities against Toxoplasma gondii , 1998, Antimicrobial Agents and Chemotherapy.

[51]  C. Katlama,et al.  Adverse cutaneous reactions to pyrimethamine/sulfadiazine and pyrimethamine/clindamycin in patients with AIDS and toxoplasmic encephalitis. , 1995, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[52]  J. Major,et al.  New nonpeptide angiotensin II receptor antagonists. 2. Synthesis, biological properties, and structure-activity relationships of 2-alkyl-4-(biphenylylmethoxy)quinoline derivatives. , 1992, Journal of medicinal chemistry.

[53]  W. Trager,et al.  Human malaria parasites in continuous culture. , 1976, Science.

[54]  S. Waxman,et al.  Mechanism of pyrimethamine-induced megaloblastosis in human bone marrow. , 1969, The New England journal of medicine.

[55]  M. Steelman Gene Set Enrichment Analysis (GSEA) , 2014 .

[56]  Maja O’Connor,et al.  A Longitudinal Study , 2013 .

[57]  R. McLeod Toxoplasmosis (Toxoplasma gondii) , 2011 .

[58]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[59]  Nicholas Fisher,et al.  Chapter 17 Type II NADH: quinone oxidoreductases of Plasmodium falciparum and Mycobacterium tuberculosis kinetic and high-throughput assays. , 2009, Methods in enzymology.

[60]  S. Boudina,et al.  Clinical manifestations of , 2009 .

[61]  P. Afonine,et al.  research papers Acta Crystallographica Section D Biological , 2003 .

[62]  Július,et al.  THE METABOLISM OF , 2003 .

[63]  P. Vidigal,et al.  Prenatal toxoplasmosis diagnosis from amniotic fluid by PCR. , 2002, Revista da Sociedade Brasileira de Medicina Tropical.

[64]  M VALENTINCIC,et al.  [Toxoplasma gondii]. , 1953, Zdravstveni vestnik.