Translational-invariant dictionaries for compressed sensing in magnetic resonance imaging

A sparse representation is an essential part of compressed sensing (CS). The discrete wavelet transform has been widely used to sparsely represent magnetic resonance images for CS applications. Artifacts usually exist in CS reconstruction when the wavelet transform is used alone. In this work, we investigate improving the image reconstruction quality through redundant translational-invariant sparsifying transforms. Cycle spinning is used with the wavelet transform and overlapping patches are used with the discrete cosine transform to achieve translational invariance. Experimental results show significant improvement in artifact reduction when contrasted with non-translational invariant transforms.

[1]  L. Ying,et al.  Compressed-sensing dynamic MR imaging with partially known support , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[2]  Mariya Doneva,et al.  Compressed sensing reconstruction for magnetic resonance parameter mapping , 2010, Magnetic resonance in medicine.

[3]  Michael Elad,et al.  Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .

[4]  Yonina C. Eldar,et al.  Compressed Sensing with Coherent and Redundant Dictionaries , 2010, ArXiv.

[5]  L. Ying,et al.  Accelerating SENSE using compressed sensing , 2009, Magnetic resonance in medicine.

[6]  Jong Chul Ye,et al.  k‐t FOCUSS: A general compressed sensing framework for high resolution dynamic MRI , 2009, Magnetic resonance in medicine.

[7]  John L. Nazareth,et al.  Conjugate-Gradient Methods , 2009, Encyclopedia of Optimization.

[8]  D. Sodickson Adaptive Compressed Sensing MRI , 2009 .

[9]  A. Bilgin,et al.  Dictionary Design for Compressed Sensing MRI , 2009 .

[10]  A. Bilgin,et al.  Compressed Sensing using Dual-Tree Complex Wavelet Transform , 2009 .

[11]  O. Guleryuz,et al.  SPArse Reconstruction using a ColLEction of bases ( SPARCLE ) , 2008 .

[12]  L. Ying,et al.  Investigation of Sparsifying Transforms for Compressed Sensing in MRI Reconstruction , 2008 .

[13]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[14]  Juan Luis Varona,et al.  Complex networks and decentralized search algorithms , 2006 .

[15]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[16]  E.J. Candes Compressive Sampling , 2022 .

[17]  Michael Lustig,et al.  k-t SPARSE: High frame rate dynamic MRI exploiting spatio-temporal sparsity , 2006 .

[18]  J. E. Fowler,et al.  The redundant discrete wavelet transform and additive noise , 2005, IEEE Signal Processing Letters.

[19]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[20]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .