Levels of Volatile Carbonyl Compounds in the Atlantic Rainforest, in the City of Rio de Janeiro

[1]  C. R. Rainho,et al.  Polycyclic aromatic hydrocarbon patterns in the city of Rio de Janeiro , 2018, Air Quality, Atmosphere & Health.

[2]  C. D. da Silva,et al.  Kinetic and mechanistic reactivity. Isoprene impact on ozone levels in an urban area near Tijuca Forest, Rio de Janeiro , 2016, Bulletin of Environmental Contamination and Toxicology.

[3]  C. N. Hewitt,et al.  Atmospheric mixing ratios of methyl ethyl ketone ( 2-butanone ) in tropical , bo-1 real , temperate and marine environments 2 , 2016 .

[4]  C. D. da Silva,et al.  Volatile Organic Compounds in the Atmosphere of the Botanical Garden of the City of Rio de Janeiro: A Preliminary Study , 2016, Bulletin of Environmental Contamination and Toxicology.

[5]  F. Scarano,et al.  Brazilian Atlantic forest: impact, vulnerability, and adaptation to climate change , 2015, Biodiversity and Conservation.

[6]  S. Veloz,et al.  Vulnerability of biodiversity hotspots to global change , 2014 .

[7]  D. Nowak,et al.  Tree and forest effects on air quality and human health in the United States. , 2014, Environmental pollution.

[8]  L. Gatti,et al.  Five years of formaldehyde and acetaldehyde monitoring in the Rio de Janeiro downtown area - Brazil , 2010 .

[9]  G. Arbilla,et al.  Pattern of volatile aldehydes and aromatic hydrocarbons in the largest urban rainforest in the Americas. , 2010, Chemosphere.

[10]  Jiamo Fu,et al.  Characteristics of atmospheric carbonyls and VOCs in Forest Park in South China , 2008, Environmental monitoring and assessment.

[11]  Sergio Machado Corrêa,et al.  Carbonyl emissions in diesel and biodiesel exhaust. , 2008 .

[12]  P. Artaxo,et al.  Química atmosférica na Amazônia: a floresta e as emissões de queimadas controlando a composição da atmosfera amazônica , 2005 .

[13]  F. Jüttner,et al.  Volatile organic compound (VOC) analysis and sources of limonene, cyclohexanone and straight chain aldehydes in axenic cultures of Calothrix and Plectonema. , 2004, Water science and technology : a journal of the International Association on Water Pollution Research.

[14]  Débora A. Azevedo,et al.  Composition of extractable organic matter in aerosols from urban areas of Rio de Janeiro city, Brazil , 1999 .

[15]  J. Kesselmeier,et al.  Biogenic Volatile Organic Compounds (VOC): An Overview on Emission, Physiology and Ecology , 1999 .

[16]  F. A. Neto,et al.  Distributions of Indoor and Outdoor Air Pollutants in Rio de Janeiro, Brazil: Implications to Indoor Air Quality in Bayside Offices , 1998 .

[17]  G. Arbilla,et al.  Simulação da Química da Atmosfera Poluída por Automóveis Movidos a Álcool , 1997 .

[18]  G. Streit,et al.  Atmospheric chemistry of aldehydes: enhanced peroxyacetyl nitrate formation from ethanol-fueled vehicular emissions. , 1988, Environmental science & technology.

[19]  F. Lipari,et al.  Aldehyde emissions from wood-burning fireplaces. , 1984, Environmental science & technology.

[20]  Jon Pasher,et al.  Air pollution removal by urban forests in Canada and its effect on air quality and human health , 2018 .

[21]  C. D. da Silva,et al.  Isoprene Emissions and Ozone Formation in Urban Conditions: A Case Study in the City of Rio de Janeiro , 2017, Bulletin of Environmental Contamination and Toxicology.

[22]  M. Andreae,et al.  Atmospheric volatile organic compounds (VOC) at a remote tropical forest site in central Amazonia , 2000 .

[23]  G. Arbilla,et al.  Simulation of Air Pollution from Mobile Source Emissions in the City of Rio de Janeiro , 1999 .

[24]  D. Grosjean,et al.  Urban air pollution in Brazil: acetaldehyde and other carbonyls , 1990 .