Simplicial complexes and complex systems

We provide a short introduction to the field of topological data analysis and discuss its possible relevance for the study of complex systems. Topological data analysis provides a set of tools to characterise the shape of data, in terms of the presence of holes or cavities between the points. The methods, based on notion of simplicial complexes, generalise standard network tools by naturally allowing for many-body interactions and providing results robust under continuous deformations of the data. We present strengths and weaknesses of current methods, as well as a range of empirical studies relevant to the field of complex systems, before identifying future methodological challenges to help understand the emergence of collective phenomena.

[1]  Michael Batty,et al.  Fractal Cities: A Geometry of Form and Function , 1996 .

[2]  Matthew Kahle Topology of random simplicial complexes: a survey , 2013, 1301.7165.

[3]  R. Pollack,et al.  Surveys on discrete and computational geometry : twenty years later : AMS-IMS-SIAM Joint Summer Research Conference, June 18-22, 2006, Snowbird, Utah , 2008 .

[4]  Andreas Uhl,et al.  Deep Learning with Topological Signatures , 2017, NIPS.

[5]  Danielle S. Bassett,et al.  Two’s company, three (or more) is a simplex , 2016, Journal of Computational Neuroscience.

[6]  C. Sparrow The Fractal Geometry of Nature , 1984 .

[7]  G. Carlsson,et al.  Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival , 2011, Proceedings of the National Academy of Sciences.

[8]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[9]  M. Kramár,et al.  Persistence of force networks in compressed granular media. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Renaud Lambiotte,et al.  Rich gets simpler , 2016, Proceedings of the National Academy of Sciences.

[11]  Nick S. Jones,et al.  Co-occurrence simplicial complexes in mathematics: identifying the holes of knowledge , 2018, Appl. Netw. Sci..

[12]  M. Kramár,et al.  Structure of force networks in tapped particulate systems of disks and pentagons. I. Clusters and loops. , 2015, Physical review. E.

[13]  Marc Barthelemy,et al.  Spatial Networks , 2010, Encyclopedia of Social Network Analysis and Mining.

[14]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[15]  James P. Gleeson,et al.  Mathematical modeling of complex contagion on clustered networks , 2015, Front. Phys..

[16]  Ginestra Bianconi,et al.  Generalized network structures: The configuration model and the canonical ensemble of simplicial complexes. , 2016, Physical review. E.

[17]  Mason A. Porter,et al.  Network analysis of particles and grains , 2017, J. Complex Networks.

[18]  J. A. Rodríguez-Velázquez,et al.  Complex Networks as Hypergraphs , 2005, physics/0505137.

[19]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[20]  Topology highlights mesoscopic functional equivalence between imagery and perception , 2018, International Journal of Psychophysiology.

[21]  Jean-Charles Delvenne,et al.  The many facets of community detection in complex networks , 2016, Applied Network Science.

[22]  Peter Bubenik,et al.  Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..

[23]  Herbert A. Simon,et al.  Aggregation of Variables in Dynamic Systems , 1961 .

[24]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[25]  Serafín Martínez-Jaramillo,et al.  Multiplex Financial Networks: Revealing the Level of Interconnectedness in the Banking System , 2017, COMPLEX NETWORKS.

[26]  Yi-Hsuan Yang,et al.  Applying Topological Persistence in Convolutional Neural Network for Music Audio Signals , 2016, ArXiv.

[27]  Ulrich Bauer,et al.  PHAT - Persistent Homology Algorithms Toolbox , 2014, ICMS.

[28]  Heather A. Harrington,et al.  Persistent homology of time-dependent functional networks constructed from coupled time series. , 2016, Chaos.

[29]  J. Marron,et al.  Persistent Homology Analysis of Brain Artery Trees. , 2014, The annals of applied statistics.

[30]  Ernesto Estrada,et al.  Centralities in Simplicial Complexes , 2017, Journal of theoretical biology.

[31]  Leonidas J. Guibas,et al.  Persistence Barcodes for Shapes , 2005, Int. J. Shape Model..

[32]  Erik Scheme,et al.  Navigating features: a topologically informed chart of electromyographic features space , 2017, Journal of The Royal Society Interface.

[33]  Konstantin Mischaikow,et al.  Topological data analysis of contagion maps for examining spreading processes on networks , 2014, Nature Communications.

[34]  Marian Gidea,et al.  Topological Data Analysis of Financial Time Series: Landscapes of Crashes , 2017 .

[35]  M. Kramár,et al.  Quantifying force networks in particulate systems , 2013, 1311.0424.

[36]  Emanuela Merelli,et al.  Topolnogical classifier for detecting the emergence of epileptic seizures , 2018, BMC Research Notes.

[37]  Austin R. Benson,et al.  Random Walks on Simplicial Complexes and the normalized Hodge Laplacian , 2018, SIAM Rev..

[38]  C. J. Carstens,et al.  Persistent Homology of Collaboration Networks , 2013 .

[39]  Ginestra Bianconi,et al.  Emergent Hyperbolic Network Geometry , 2016, Scientific Reports.

[40]  Masahiko Haraguchi,et al.  Discrimination of economic Input-Output networks using Persistent Homology , 2016 .

[41]  Arkadiusz Stopczynski,et al.  Fundamental structures of dynamic social networks , 2015, Proceedings of the National Academy of Sciences.

[42]  Mariette Yvinec,et al.  The Gudhi Library: Simplicial Complexes and Persistent Homology , 2014, ICMS.

[43]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[44]  Yi Zhao,et al.  Persistent topological features of dynamical systems. , 2015, Chaos.

[45]  R. Ghrist Barcodes: The persistent topology of data , 2007 .

[46]  Guido Caldarelli,et al.  Random hypergraphs and their applications , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  François Fouss,et al.  Random-Walk Computation of Similarities between Nodes of a Graph with Application to Collaborative Recommendation , 2007, IEEE Transactions on Knowledge and Data Engineering.

[48]  Piet Van Mieghem,et al.  The Simplex Geometry of Graphs , 2018, J. Complex Networks.

[49]  Steffen Klamt,et al.  Hypergraphs and Cellular Networks , 2009, PLoS Comput. Biol..

[50]  Emanuela Merelli,et al.  jHoles: A Tool for Understanding Biological Complex Networks via Clique Weight Rank Persistent Homology , 2014, CS2Bio.

[51]  Amin Vahdat,et al.  Hyperbolic Geometry of Complex Networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  Henry Markram,et al.  Cliques of Neurons Bound into Cavities Provide a Missing Link between Structure and Function , 2016, Front. Comput. Neurosci..

[53]  Konstantin Mischaikow,et al.  Evolution of force networks in dense particulate media. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  Moo K. Chung,et al.  Discriminative persistent homology of brain networks , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[55]  Ginestra Bianconi,et al.  Dense Power-law Networks and Simplicial Complexes , 2018, Physical review. E.

[56]  G. Petri,et al.  Homological scaffolds of brain functional networks , 2014, Journal of The Royal Society Interface.

[57]  Mikael Vejdemo-Johansson,et al.  javaPlex: A Research Software Package for Persistent (Co)Homology , 2014, ICMS.

[58]  Jean M. Vettel,et al.  Cliques and cavities in the human connectome , 2016, Journal of Computational Neuroscience.

[59]  Frédéric Chazal,et al.  An Introduction to Topological Data Analysis: Fundamental and Practical Aspects for Data Scientists , 2017, Frontiers in Artificial Intelligence.

[60]  Francesco Vaccarino,et al.  Topological Strata of Weighted Complex Networks , 2013, PloS one.

[61]  Konstantin Mischaikow,et al.  Topology of force networks in compressed granular media , 2012 .

[62]  André Panisson,et al.  Unveiling patterns of international communities in a global city using mobile phone data , 2015, EPJ Data Science.

[63]  Heejung Kim,et al.  Brain Networks Engaged in Audiovisual Integration During Speech Perception Revealed by Persistent Homology-Based Network Filtration , 2015, Brain Connect..

[64]  P. Skraba,et al.  Maximally Persistent Cycles in Random Geometric Complexes , 2015, 1509.04347.

[65]  Alice Patania,et al.  The shape of collaborations , 2017, EPJ Data Science.

[66]  Magnus Egerstedt,et al.  Graphs, Simplicial Complexes, and Beyond: Topological Tools for Multi-agent Coordination , 2008 .

[67]  G. Carlsson,et al.  Topology of viral evolution , 2013, Proceedings of the National Academy of Sciences.

[68]  M. Kramár,et al.  Structure of force networks in tapped particulate systems of disks and pentagons. II. Persistence analysis. , 2015, Physical review. E.

[69]  Heather A Harrington,et al.  Topological data analysis of continuum percolation with disks. , 2018, Physical review. E.

[70]  Mason A. Porter,et al.  A roadmap for the computation of persistent homology , 2015, EPJ Data Science.

[71]  Robert Ghrist,et al.  Elementary Applied Topology , 2014 .

[72]  Ingo Scholtes,et al.  Understanding Complex Systems: From Networks to Optimal Higher-Order Models , 2018, ArXiv.

[73]  Danielle S Bassett,et al.  The importance of the whole: Topological data analysis for the network neuroscientist , 2018, Network Neuroscience.

[74]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[75]  Edward T. Bullmore,et al.  Modular and Hierarchically Modular Organization of Brain Networks , 2010, Front. Neurosci..

[76]  Olaf Sporns,et al.  Towards a new approach to reveal dynamical organization of the brain using topological data analysis , 2018, Nature Communications.

[77]  Alessandro Vespignani,et al.  Epidemic spreading in scale-free networks. , 2000, Physical review letters.

[78]  Morten L. Kringelbach,et al.  Insights into Brain Architectures from the Homological Scaffolds of Functional Connectivity Networks , 2016, Front. Syst. Neurosci..

[79]  Alice Patania,et al.  Topological analysis of data , 2017, EPJ Data Science.

[80]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .