High frequency geometric detail manipulation and editing for point-sampled surfaces

In this paper, based on the new definition of high frequency geometric detail for point-sampled surfaces, a new approach for detail manipulation and a detail-preserving editing framework are proposed. Geometric detail scaling and enhancement can always produce fantastic effects by directly manipulating the geometric details of the underlying geometry. Detail-preserving editing is capable of preserving geometric details during the shape deformation of point-sampled model. For efficient editing, the point set of the model is first clustered by a mean shift scheme, according to its anisotropic geometric features and each cluster is abstracted as a simplification sample point (SSP). Our editing operation is implemented by manipulating the SSP first and then diffusing the deformation to all sample points on the underlying geometry. As a postprocessing step, a new up-sampling and relaxation procedure is proposed to refine the deformed model. The effectiveness of the proposed method is demonstrated by several examples.

[1]  Christer Sjöström,et al.  State-of-the-art report , 1997 .

[2]  John M. Snyder,et al.  Large mesh deformation using the volumetric graph Laplacian , 2005, SIGGRAPH '05.

[3]  Marc Alexa,et al.  Differential coordinates for local mesh morphing and deformation , 2003, The Visual Computer.

[4]  Markus H. Gross,et al.  Efficient Animation of Point‐Sampled Thin Shells , 2005, Comput. Graph. Forum.

[5]  Dorin Comaniciu,et al.  Mean shift analysis and applications , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[6]  M. Teschner,et al.  Meshless deformations based on shape matching , 2005, SIGGRAPH 2005.

[7]  Markus H. Gross,et al.  Shape modeling with point-sampled geometry , 2003, ACM Trans. Graph..

[8]  Hong Qin,et al.  Real‐time meshless deformation , 2005, Comput. Animat. Virtual Worlds.

[9]  Chunxia Xiao,et al.  A unified method for appearance and geometry completion of point set surfaces , 2007, The Visual Computer.

[10]  Markus H. Gross,et al.  Point-based multiscale surface representation , 2006, TOGS.

[11]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[12]  Markus H. Gross,et al.  Spectral processing of point-sampled geometry , 2001, SIGGRAPH.

[13]  Marc Alexa,et al.  Point based animation of elastic, plastic and melting objects , 2004, SCA '04.

[14]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Kun Zhou,et al.  Mesh editing with poisson-based gradient field manipulation , 2004, SIGGRAPH 2004.

[16]  D. Levin,et al.  Linear rotation-invariant coordinates for meshes , 2005, SIGGRAPH 2005.

[17]  Hans-Peter Seidel,et al.  Interactive multi-resolution modeling on arbitrary meshes , 1998, SIGGRAPH.

[18]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Christian Rössl,et al.  Differential coordinates for interactive mesh editing , 2004, Proceedings Shape Modeling Applications, 2004..

[20]  Christian Rössl,et al.  Harmonic Guidance for Surface Deformation , 2005, Comput. Graph. Forum.

[21]  Matthias Zwicker,et al.  Pointshop 3D: an interactive system for point-based surface editing , 2002, SIGGRAPH.

[22]  Hong Qin,et al.  Physically based morphing of point‐sampled surfaces , 2005, Comput. Animat. Virtual Worlds.

[23]  Marc Alexa,et al.  A sketch-based interface for detail-preserving mesh editing , 2005, SIGGRAPH 2005.

[24]  Markus H. Gross,et al.  Efficient simplification of point-sampled surfaces , 2002, IEEE Visualization, 2002. VIS 2002..

[25]  Christian Rössl,et al.  Laplacian surface editing , 2004, SGP '04.

[26]  H. Shum,et al.  Subspace gradient domain mesh deformation , 2006, SIGGRAPH 2006.

[27]  Hui Li,et al.  Detail-Preserving Local Editing for Point-Sampled Geometry , 2006, Computer Graphics International.

[28]  Olga Sorkine,et al.  Laplacian Mesh Processing , 2005 .

[29]  Peter Schröder,et al.  Interactive multiresolution mesh editing , 1997, SIGGRAPH.

[30]  L. Guibas,et al.  Meshless animation of fracturing solids , 2005, ACM Trans. Graph..

[31]  Chunxia Xiao,et al.  A dynamic balanced flow for filtering point-sampled geometry , 2006, The Visual Computer.

[32]  Ligang Liu,et al.  Dual Laplacian editing for meshes , 2006, IEEE Transactions on Visualization and Computer Graphics.

[33]  Hong Qin,et al.  Meshless thin-shell simulation based on global conformal parameterization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[34]  Peter Schröder,et al.  Multiresolution signal processing for meshes , 1999, SIGGRAPH.

[35]  Hong Qin,et al.  Dynamic sculpting and deformation of point set surfaces , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..