Sensitivity Analysis in a Complex Marine Ecological Model

Sensitivity analysis (SA) has long been recognized as part of best practices to assess if any particular model can be suitable to inform decisions, despite its uncertainties. SA is a commonly used approach for identifying important parameters that dominate model behavior. As such, SA address two elementary questions in the modeling exercise, namely, how sensitive is the model to changes in individual parameter values, and which parameters or associated processes have more influence on the results. In this paper we report on a local SA performed on a complex marine biogeochemical model that simulates oxygen, organic matter and nutrient cycles (N, P and Si) in the water column, and well as the dynamics of biological groups such as producers, consumers and decomposers. SA was performed using a “one at a time” parameter perturbation method, and a color-code matrix was developed for result visualization. The outcome of this study was the identification of key parameters influencing model performance, a particularly helpful insight for the subsequent calibration exercise. Also, the color-code matrix methodology proved to be effective for a clear identification of the parameters with most impact on selected variables of the model.

[1]  Luis A. Bastidas,et al.  Sensitivity analysis using mass flux and concentration , 1999 .

[2]  H. Verheye,et al.  Short-term variability during an anchor station study in the southern Benguela upwelling system: A simulation model , 1991 .

[3]  Elizabeth B. Harper,et al.  Global sensitivity analysis for complex ecological models: a case study of riparian cottonwood population dynamics. , 2011, Ecological applications : a publication of the Ecological Society of America.

[4]  G. Hornberger Eutrophication in peel inlet—I. The problem-defining behavior and a mathematical model for the phosphorus scenario , 1980 .

[5]  Andrea Castelletti,et al.  Emulation techniques for the reduction and sensitivity analysis of complex environmental models , 2012, Environ. Model. Softw..

[6]  A. Saltelli,et al.  The role of sensitivity analysis in ecological modelling , 2007 .

[7]  Emanuele Borgonovo,et al.  Model emulation and moment-independent sensitivity analysis: An application to environmental modelling , 2012, Environ. Model. Softw..

[8]  K. Rose,et al.  Parameter sensitivity study of the NEMURO lower trophic level marine ecosystem model , 2007 .

[9]  T. R. Anderson Modelling the influence of food C:N ratio, and respiration on growth and nitrogen excretion in marine zooplankton and bacteria , 1992 .

[10]  V. Estrada,et al.  Global sensitivity analysis in the development of first principle-based eutrophication models , 2010, Environ. Model. Softw..

[11]  Nicholas Skowronski,et al.  Simulation and sensitivity analysis of carbon storage and fluxes in the New Jersey Pinelands , 2011, Environ. Model. Softw..

[12]  George B. Arhonditsis,et al.  Eutrophication model for Lake Washington (USA): Part I. Model description and sensitivity analysis , 2005 .

[13]  Paola Annoni,et al.  Sixth International Conference on Sensitivity Analysis of Model Output How to avoid a perfunctory sensitivity analysis , 2010 .

[14]  H. Ducklow,et al.  A nitrogen-based model of plankton dynamics in the oceanic mixed layer , 1990 .

[15]  Kai W. Wirtz,et al.  Linear understanding of a huge aquatic ecosystem model using a group-collecting sensitivity analysis , 2002, Environ. Model. Softw..

[16]  Francisco Javier Elorza,et al.  Sensitivity analysis of distributed environmental simulation models: understanding the model behaviour in hydrological studies at the catchment scale , 2003, Reliab. Eng. Syst. Saf..

[17]  M. Miller Agency , 2010 .

[18]  Andrea Saltelli,et al.  An effective screening design for sensitivity analysis of large models , 2007, Environ. Model. Softw..

[19]  John H. Steele,et al.  A simple model for plankton patchiness , 1992 .

[20]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[21]  George M. Hornberger,et al.  On modeling the mechanisms that control in‐stream phosphorus, macrophyte, and epiphyte dynamics: An assessment of a new model using general sensitivity analysis , 2001 .

[22]  Barbara A. Adams-Vanharn,et al.  Evaluation of the current state of mechanistic aquatic biogeochemical modeling: citation analysis and future perspectives. , 2006, Environmental science & technology.

[23]  Marcos Mateus A process-oriented model of pelagic biogeochemistry for marine systems. Part I: Model description , 2012 .

[24]  George M. Hornberger,et al.  Eutrophication in peel inlet—III. A model for the nitrogen scenario and a retrospective look at the preliminary analysis , 1984 .

[25]  A. Saltelli,et al.  A quantitative model-independent method for global sensitivity analysis of model output , 1999 .

[26]  Olivier Klepper,et al.  Multivariate aspects of model uncertainty analysis: tools for sensitivity analysis and calibration , 1997 .

[27]  Stefano Tarantola,et al.  Sensitivity analysis in model calibration: GSA-GLUE approach , 2001 .

[28]  Jim Berger,et al.  Special Issue on Computer Modeling , 2009, Technometrics.

[29]  Tamás Turányi,et al.  Local and global uncertainty analysis of complex chemical kinetic systems , 2006, Reliab. Eng. Syst. Saf..

[30]  R. Srinivasan,et al.  A global sensitivity analysis tool for the parameters of multi-variable catchment models , 2006 .

[31]  Soroosh Sorooshian,et al.  Sensitivity analysis of a land surface scheme using multicriteria methods , 1999 .

[32]  J. Steele,et al.  The role of predation in plankton models , 1992 .

[33]  R. Spear Eutrophication in peel inlet—II. Identification of critical uncertainties via generalized sensitivity analysis , 1980 .

[34]  Fugui Wang,et al.  Global sensitivity analysis of a modified CENTURY model for simulating impacts of harvesting fine woody biomass for bioenergy. , 2013 .

[35]  Sarah Gaichas,et al.  Dealing with uncertainty in ecosystem models: The paradox of use for living marine resource management , 2012 .

[36]  Snejana Moncheva,et al.  An exposure-effect approach for evaluating ecosystem-wide risks from human activities , 2015 .

[37]  Malka Gorfine,et al.  Sensitivity analysis for complex ecological models - A new approach , 2011, Environ. Model. Softw..

[38]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[39]  George B. Arhonditsis,et al.  Eutrophication model for Lake Washington (USA) Part II-model calibration and system dynamics analysis , 2005 .

[40]  Sensitivity analysis of an ecological model applied to the Ria de Aveiro , 2009 .

[41]  Shuangzhe Liu,et al.  Global Sensitivity Analysis: The Primer by Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cariboni, Debora Gatelli, Michaela Saisana, Stefano Tarantola , 2008 .

[42]  Wei Chu,et al.  A comprehensive evaluation of various sensitivity analysis methods: A case study with a hydrological model , 2014, Environ. Model. Softw..

[43]  Michael R. Heath,et al.  Global sensitivity analysis of an end-to-end marine ecosystem model of the North Sea: factors affecting the biomass of fish and benthos , 2014 .

[44]  P. Leitão,et al.  Is it relevant to explicitly parameterize chlorophyll synthesis in marine ecological models , 2012 .

[45]  Joseph H. A. Guillaume,et al.  Characterising performance of environmental models , 2013, Environ. Model. Softw..

[46]  Silvio Funtowicz,et al.  Application of a checklist for quality assistance in environmental modelling to an energy model , 2005 .

[47]  Craig Loehle,et al.  A hypothesis testing framework for evaluating ecosystem model performance , 1997 .

[48]  A. O'Hagan,et al.  Probabilistic sensitivity analysis of complex models: a Bayesian approach , 2004 .

[49]  Thorsten Wagener,et al.  Risk-based modelling of surface water quality: a case study of the Charles River, Massachusetts , 2003 .

[50]  Charles C. Blackwell,et al.  Minimum Sensitivity Parameter Estimation for Dynamic Ecosystem Models , 1983 .

[51]  K. Reckhow,et al.  Modeling excessive nutrient loading in the environment. , 1999, Environmental pollution.

[52]  Michael R. Heath,et al.  Erratum to “Global sensitivity analysis of an end-to-end marine ecosystem model of the North Sea: Factors affecting the biomass of fish and benthos” [Ecol. Model. 273 (2014) 251–263] , 2014 .

[53]  A. Blumberg,et al.  Quantifying Uncertainty in Estuarine and Coastal Ocean Circulation Modeling , 2008 .

[54]  Igor Linkov,et al.  Exploring vulnerability of coastal habitats to sea level rise through global sensitivity and uncertainty analyses , 2011, Environ. Model. Softw..

[55]  R. Neves,et al.  A process-oriented model of pelagic biogeochemistry for marine systems. Part II: Application to a mesotidal estuary , 2012 .

[56]  P. Reichert,et al.  Biogeochemical model of Lake Zürich : sensitivity, identifiability and uncertainty analysis , 2001 .

[57]  M. Elliott,et al.  Sensitivity analysis to explore responsiveness and dynamic range of multi-metric fish-based indices for assessing the ecological status of estuaries and lagoons , 2013, Hydrobiologia.

[58]  Francisco J. Rueda,et al.  A calibration strategy for dynamic succession models including several phytoplankton groups , 2011, Environ. Model. Softw..

[59]  H. Künsch,et al.  Practical identifiability analysis of large environmental simulation models , 2001 .