Manipulation of metal-dielectric core-shell particles in optical fields

Metal-dielectric core-shell particles represent promising tools in nanoplasmonics. In combination with optical tweezers they can be manipulated in a contactless way through fluid and their plasmonic properties can be used to probe or modify the local environment. We perform a numerical parametric study to find the particle geometry and material parameters under which such particle can be stably confined in optical tweezers. We use the theory based on Mie scattering in the focal field of an ideal water immersion objective of numerical aperture NA=1.2. For very thin metal layers we find that strong trapping on the optical axis can be achieved.

[1]  Lukas Novotny,et al.  Principles of Nano-Optics by Lukas Novotny , 2006 .

[2]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[3]  Simon Hanna,et al.  First-order nonconservative motion of optically trapped nonspherical particles. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Tomáš Čižmár,et al.  Shaping the future of manipulation , 2011 .

[5]  Milton Kerker,et al.  The Scattering of Light and Other Electromagnetic Radiation ~Academic , 1969 .

[6]  M. Pinar Mengüç,et al.  Internal absorption cross sections in a stratified sphere. , 1990, Applied optics.

[7]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[8]  R. Olmon,et al.  Optical dielectric function of gold , 2012 .

[9]  H. M. Nussenzveig,et al.  Theory of optical tweezers , 1999 .

[10]  Pavel Zemánek,et al.  Rotation, oscillation and hydrodynamic synchronization of optically trapped oblate spheroidal microparticles. , 2014, Optics express.

[11]  E. Wolf,et al.  Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[12]  Anita Jannasch,et al.  Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres , 2012, Nature Photonics.

[13]  Pavel Zemánek,et al.  Light at work: The use of optical forces for particle manipulation, sorting, and analysis , 2008, Electrophoresis.

[14]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[15]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[16]  Naomi J. Halas,et al.  Linear optical properties of gold nanoshells , 1999 .

[17]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[18]  Oto Brzobohatý,et al.  Experimental demonstration of optical transport, sorting and self-arrangement using a /`tractor beam/' , 2013 .

[19]  B. U. Felderhof,et al.  Force, torque, and absorbed energy for a body of arbitrary shape and constitution in an electromagnetic radiation field , 1996 .

[20]  Naomi J. Halas,et al.  Nanoengineering of optical resonances , 1998 .

[21]  Pavel Zemánek,et al.  Metallic nanoparticles in a standing wave: Optical force and heating , 2013 .

[22]  Antonio Alvaro Ranha Neves,et al.  Exact partial wave expansion of optical beams with respect to an arbitrary origin. , 2006, Optics letters.

[23]  W. Yang,et al.  Improved recursive algorithm for light scattering by a multilayered sphere. , 2003, Applied optics.

[24]  J. P. Barton,et al.  Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam , 1989 .