Multigrid algorithms for $hp$-version Interior Penalty Discontinuous Galerkin methods on polygonal and polyhedral meshes

In this paper we analyze the convergence properties of two-level and W-cycle multigrid solvers for the numerical solution of the linear system of equations arising from hp-version symmetric interior penalty discontinuous Galerkin discretizations of second-order elliptic partial differential equations on polygonal/polyhedral meshes. We prove that the two-level method converges uniformly with respect to the granularity of the grid and the polynomial approximation degree p, provided that the number of smoothing steps, which depends on p, is chosen sufficiently large. An analogous result is obtained for the W-cycle multigrid algorithm, which is proved to be uniformly convergent with respect to the mesh size, the polynomial approximation degree, and the number of levels, provided the number of smoothing steps is chosen sufficiently large. Numerical experiments are presented which underpin the theoretical predictions; moreover, the proposed theoretical assumptions are not fully satisfied.

[1]  Paul Houston,et al.  Preconditioning High-Order Discontinuous Galerkin Discretizations of Elliptic Problems , 2013, Domain Decomposition Methods in Science and Engineering XX.

[2]  Paola F. Antonietti,et al.  Multigrid Algorithms for hp-Discontinuous Galerkin Discretizations of Elliptic Problems , 2013, SIAM J. Numer. Anal..

[3]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[4]  Stefano Giani,et al.  Review of Discontinuous Galerkin Finite Element Methods for Partial Differential Equations on Complicated Domains , 2016, IEEE CSE 2016.

[5]  G. A. Baker Finite element methods for elliptic equations using nonconforming elements , 1977 .

[6]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[7]  Jacob B. Schroder,et al.  Smoothed aggregation multigrid solvers for high-order discontinuous Galerkin methods for elliptic problems , 2011, J. Comput. Phys..

[8]  W. Hackbusch,et al.  Composite finite elements for the approximation of PDEs on domains with complicated micro-structures , 1997 .

[9]  Jinchao Xu,et al.  An agglomeration multigrid method for unstructured grids , 1998 .

[10]  Robert Scheichl,et al.  Algebraic multigrid for discontinuous Galerkin discretizations of heterogeneous elliptic problems , 2012, Numer. Linear Algebra Appl..

[11]  G. Paulino,et al.  PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab , 2012 .

[12]  I. Moulitsas,et al.  Multilevel Algorithms for Generating Coarse Grids for Multigrid Methods , 2001, ACM/IEEE SC 2001 Conference (SC'01).

[13]  J. Aubin,et al.  Approximation des problèmes aux limites non homogènes pour des opérateurs non linéaires , 1970 .

[14]  Alessandro Colombo,et al.  Agglomeration based discontinuous Galerkin discretization of the Euler and Navier-Stokes equations , 2012 .

[15]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[16]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[17]  Paul Houston,et al.  A Class of Domain Decomposition Preconditioners for hp-Discontinuous Galerkin Finite Element Methods , 2011, J. Sci. Comput..

[18]  Stefano Giani,et al.  hp-Version Composite Discontinuous Galerkin Methods for Elliptic Problems on Complicated Domains , 2013, SIAM J. Sci. Comput..

[19]  Paola F. Antonietti,et al.  Multigrid Algorithms for High Order Discontinuous Galerkin Methods , 2016, IEEE CSE 2016.

[20]  Paola F. Antonietti,et al.  Bubble stabilization of Discontinuous Galerkin methods , 2009 .

[21]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[22]  Lourenço Beirão da Veiga,et al.  A Stream Virtual Element Formulation of the Stokes Problem on Polygonal Meshes , 2014, SIAM J. Numer. Anal..

[23]  PAUL HOUSTON,et al.  International Journal of C 0000 (copyright Holder)institute for Scientific Numerical Analysis and Modeling Computing and Information a Note on Optimal Spectral Bounds for Nonoverlapping Domain Decomposition Preconditioners for Hp–version Discontinuous Galerkin Methods , 2022 .

[24]  Alessandro Colombo,et al.  Agglomeration-based physical frame dG discretizations: An attempt to be mesh free , 2014 .

[25]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[26]  Alessandro Russo,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014, 1506.07328.

[27]  Stefano Giani,et al.  Domain Decomposition Preconditioners for Discontinuous Galerkin Methods for Elliptic Problems on Complicated Domains , 2013, Journal of Scientific Computing.

[28]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[29]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[30]  Simone Scacchi,et al.  A C1 Virtual Element Method for the Cahn-Hilliard Equation with Polygonal Meshes , 2015, SIAM J. Numer. Anal..