Recurrence relations, succession rules and the positivity problem
暂无分享,去创建一个
[1] Stefan Gerhold,et al. Combinatorial Sequences: Non-Holonomicity and Inequalities , 2008 .
[2] Srecko Brlek,et al. On the equivalence problem for succession rules , 2005, Discret. Math..
[3] Matti Soittola,et al. Positive Rational Sequences , 1976, Theor. Comput. Sci..
[4] Tero Harju,et al. Positivity of second order linear recurrent sequences , 2006, Discret. Appl. Math..
[5] Andrea Frosini,et al. A Technology for Reverse-Engineering a Combinatorial Problem from a Rational Generating Function , 2001, Adv. Appl. Math..
[6] Elena Barcucci,et al. Some linear recurrences and their combinatorial interpretation by means of regular languages , 2001, Theor. Comput. Sci..
[7] Joël Ouaknine,et al. Positivity Problems for Low-Order Linear Recurrence Sequences , 2013, SODA.
[8] Jean Berstel,et al. Another proof of Soittola's theorem , 2008, Theor. Comput. Sci..
[9] D. Zeilberger. A holonomic systems approach to special functions identities , 1990 .
[10] Arto Salomaa,et al. Automata-Theoretic Aspects of Formal Power Series , 1978, Texts and Monographs in Computer Science.
[11] Alberto Del Lungo,et al. ECO:a methodology for the enumeration of combinatorial objects , 1999 .
[12] Stefano Bilotta,et al. Avoiding cross-bifix-free binary words , 2013, Acta Informatica.
[13] Renzo Pinzani,et al. Jumping succession rules and their generating functions , 2003, Discret. Math..
[14] Christoph Koutschan,et al. Regular languages and their generating functions: The inverse problem , 2008, Theor. Comput. Sci..
[15] Vichian Laohakosol,et al. Positivity of third order linear recurrence sequences , 2009, Discret. Appl. Math..
[16] Fan Chung Graham,et al. The Number of Baxter Permutations , 1978, J. Comb. Theory, Ser. A.
[17] J. Berstel,et al. Deux propriétés décidables des suites récurrentes linéaires , 1976 .
[18] Dominique Perrin. On Positive Matrices , 1992, Theor. Comput. Sci..
[19] Andrea Frosini,et al. A Note on Rational Succession Rules , 2003 .
[20] Renzo Pinzani,et al. An algebraic characterization of the set of succession rules , 2002, Theor. Comput. Sci..
[21] Jean Berstel,et al. Rational series and their languages , 1988, EATCS monographs on theoretical computer science.
[22] S. Corteel,et al. Séries génératrices exponentielles pour les ECO-systèmes signés , 2000 .