Quantum filtering for systems driven by fields in single-photon states or superposition of coherent states

We derive the stochastic master equations, that is to say, quantum filters, and master equations for an arbitrary quantum system probed by a continuous-mode bosonic input field in two types of non-classical states. Specifically, we consider the cases where the state of the input field is a superposition or combination of: (1) a continuous-mode single photon wave packet and vacuum, and (2) any number of continuous-mode coherent states.

[1]  J. Fink,et al.  Experimental state tomography of itinerant single microwave photons. , 2011, Physical review letters.

[2]  Valerio Scarani,et al.  Efficient excitation of a two-level atom by a single photon in a propagating mode , 2010, 1010.4661.

[3]  Shanhui Fan,et al.  Full inversion of a two-level atom with a single-photon pulse in one-dimensional geometries , 2010 .

[4]  G. Milburn,et al.  Quantum Measurement and Control: Frontmatter , 2009 .

[5]  T. Ralph,et al.  Optimized generation of heralded Fock states using parametric down-conversion , 2009, 0909.4147.

[6]  S. Scheel,et al.  Single-photon sources–an introduction , 2009 .

[7]  Gerd Leuchs,et al.  Perfect excitation of a matter qubit by a single photon in free space , 2008, 0808.1666.

[8]  M. R. James,et al.  Quantum Feedback Networks: Hamiltonian Formulation , 2008, 0804.3442.

[9]  G. Johnson,et al.  Springer Handbook of Lasers and Optics , 2008 .

[10]  Philippe Grangier,et al.  Generation of optical ‘Schrödinger cats’ from photon number states , 2007, Nature.

[11]  Matthew R. James,et al.  The Series Product and Its Application to Quantum Feedforward and Feedback Networks , 2007, IEEE Transactions on Automatic Control.

[12]  G. Milburn,et al.  Coherent control of single photon states , 2007, quant-ph/0702115.

[13]  Julien Laurat,et al.  Generating Optical Schrödinger Kittens for Quantum Information Processing , 2006, Science.

[14]  K. Mølmer,et al.  Generation of a superposition of odd photon number states for quantum information networks. , 2006, Physical review letters.

[15]  M. James,et al.  An Introduction to Quantum Filtering , 2006, SIAM J. Control. Optim..

[16]  M. Orrit,et al.  Single-photon sources , 2005 .

[17]  I. Walmsley,et al.  Pure-state single-photon wave-packet generation by parametric down-conversion in a distributed microcavity , 2005, quant-ph/0504062.

[18]  A. D. Boozer,et al.  Deterministic Generation of Single Photons from One Atom Trapped in a Cavity , 2004, Science.

[19]  R. Alicki,et al.  Decoherence and the Appearance of a Classical World in Quantum Theory , 2004 .

[20]  Hidenori Kimura,et al.  Transfer function approach to quantum Control-Part II: Control concepts and applications , 2003, IEEE Trans. Autom. Control..

[21]  Hidenori Kimura,et al.  Transfer function approach to quantum control-part I: Dynamics of quantum feedback systems , 2003, IEEE Trans. Autom. Control..

[22]  L. Bouten,et al.  Stochastic Schrödinger equations , 2003, quant-ph/0309205.

[23]  G. Milburn,et al.  Quantum computation with optical coherent states , 2002, QELS 2002.

[24]  Michael Pepper,et al.  Electrically Driven Single-Photon Source , 2001, Science.

[25]  G. Milburn,et al.  Weak-force detection with superposed coherent states , 2001, quant-ph/0109049.

[26]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[27]  A. Lvovsky,et al.  Quantum state reconstruction of the single-photon Fock state. , 2001, Physical review letters.

[28]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[29]  Thomas Pellizzari,et al.  Photon-Wavepackets as Flying Quantum Bits , 1998 .

[30]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[31]  G. Staszewska,et al.  Nondemolition quantum filtering , 1995 .

[32]  V. P. Belavkin,et al.  Quantum Diffusion, Measurement and Filtering I , 1994 .

[33]  Carmichael,et al.  Quantum trajectory theory for cascaded open systems. , 1993, Physical review letters.

[34]  Gardiner,et al.  Driving a quantum system with the output field from another driven quantum system. , 1993, Physical review letters.

[35]  Gardiner,et al.  Monte Carlo simulation of master equations in quantum optics for vacuum, thermal, and squeezed reservoirs. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[36]  H. Heuer Critical slowing down in local dynamics simulations , 1992 .

[37]  K. Mølmer,et al.  Wave-function approach to dissipative processes in quantum optics. , 1992, Physical review letters.

[38]  V. Belavkin,et al.  Measurements continuous in time and a posteriori states in quantum mechanics , 1991, Journal of Physics A: Mathematical and General.

[39]  Collett,et al.  Nonlocality of a single photon. , 1991, Physical review letters.

[40]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[41]  Robin L. Hudson,et al.  Quantum Ito's formula and stochastic evolutions , 1984 .

[42]  R. Sillitto The Quantum Theory of Light , 1974 .

[43]  K. Nemoto,et al.  Schr¨odinger cats and their power for quantum information processing , 2018 .

[44]  E. Brändas,et al.  Unstable states in the continuous spectra , 2010 .

[45]  I. Stamatescu,et al.  Decoherence and the Appearance of a Classical World in Quantum Theory , 1996 .

[46]  H. Carmichael An open systems approach to quantum optics , 1993 .

[47]  K. Parthasarathy An Introduction to Quantum Stochastic Calculus , 1992 .

[48]  G. Nutt Open systems , 1992, Prentice Hall Series in Innovative Technology.