Morphology for Higher-Dimensional Tensor Data Via Loewner Ordering
暂无分享,去创建一个
Joachim Weickert | Martin Welk | Bernhard Burgeth | Christian Feddern | Andrés Bruhn | Nils Papenberg
[1] Joachim Weickert,et al. Morphological Operations on Matrix-Valued Images , 2004, ECCV.
[2] T. Brox,et al. Diffusion and regularization of vector- and matrix-valued images , 2002 .
[3] H. Heijmans. Morphological image operators , 1994 .
[4] Adrian S. Lewis,et al. Convex Analysis And Nonlinear Optimization , 2000 .
[5] Lucas J. van Vliet,et al. A nonlinear laplace operator as edge detector in noisy images , 1989, Comput. Vis. Graph. Image Process..
[6] Alexander Barvinok,et al. A course in convexity , 2002, Graduate studies in mathematics.
[7] Pierre Soille,et al. Morphological Image Analysis , 1999 .
[8] Henry P. Kramer,et al. Iterations of a non-linear transformation for enhancement of digital images , 1975, Pattern Recognit..
[9] J. Hiriart-Urruty,et al. Fundamentals of Convex Analysis , 2004 .
[10] John I. Goutsias,et al. Mathematical Morphology and its Applications to Image and Signal Processing , 2000, Computational Imaging and Vision.
[11] Otmar Scherzer,et al. Inverse Problems, Image Analysis, and Medical Imaging , 2002 .
[12] Joachim Weickert,et al. Median Filtering of Tensor-Valued Images , 2003, DAGM-Symposium.
[13] P. Basser. Inferring microstructural features and the physiological state of tissues from diffusion‐weighted images , 1995, NMR in biomedicine.
[14] Universitdes Saarlandes,et al. Curvature-Driven PDE Methods for Matrix-Valued Images , 2004 .
[15] Jean Serra,et al. Image Analysis and Mathematical Morphology , 1983 .
[16] G. Matheron. Éléments pour une théorie des milieux poreux , 1967 .
[17] Werner Nagel. Image Analysis and Mathematical Morphology. Volume 2: Theoretical Advances. Edited by Jean Serra , 1870 .
[18] Rachid Deriche,et al. Diffusion tensor regularization with constraints preservation , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.