Guaranteed Two-Sided Bounds on All Eigenvalues of Preconditioned Diffusion and Elasticity Problems Solved by the Finite Element Method

A method of estimating all eigenvalues of a preconditioned discretized scalar diffusion operator with Dirichlet boundary conditions has been recently introduced in T. Gergelits, K.A. Mardal, B.F. Nielsen, Z. Strako\v{s}: Laplacian preconditioning of elliptic PDEs: Localization of the eigenvalues of the discretized operator, SIAM Journal on Numerical Analysis 57(3) (2019), 1369-1394. Motivated by this paper, we offer a slightly different approach that extends the previous results in some directions. Namely, we provide bounds on all increasingly ordered eigenvalues of a general diffusion or elasticity operator with tensor data, discretized with the conforming finite element method, preconditioned by the inverse of a matrix of the same operator with different data. Our results hold for mixed Dirichlet and Robin or periodic boundary conditions applied to the original and preconditioning problems. The bounds are two-sided, guaranteed, easily accessible, and depend solely on the material data.

[1]  Barbara Kaltenbacher,et al.  Iterative Solution Methods , 2015, Handbook of Mathematical Methods in Imaging.

[2]  P. Ciarlet,et al.  Mathematical elasticity, volume I: Three-dimensional elasticity , 1989 .

[3]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[4]  H. V. D. Vorst,et al.  The rate of convergence of Conjugate Gradients , 1986 .

[5]  D. Serre Matrices: Theory and Applications , 2002 .

[6]  Zdenek Strakos,et al.  Generalized Spectrum of Second Order Differential Operators , 2020, SIAM J. Numer. Anal..

[7]  Zdenek Strakos,et al.  Laplacian Preconditioning of Elliptic PDEs: Localization of the Eigenvalues of the Discretized Operator , 2018, SIAM J. Numer. Anal..

[8]  I. Hlavácek,et al.  Mathematical Theory of Elastic and Elasto Plastic Bodies: An Introduction , 1981 .

[9]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[10]  Radim Blaheta,et al.  Displacement decomposition - incomplete factorization preconditioning techniques for linear elasticity problems , 1994, Numer. Linear Algebra Appl..

[11]  Gérard Meurant,et al.  On computing quadrature-based bounds for the A-norm of the error in conjugate gradients , 2012, Numerical Algorithms.

[12]  Z. Strakos,et al.  On the real convergence rate of the conjugate gradient method , 1991 .

[13]  Z. Strakos,et al.  Krylov Subspace Methods: Principles and Analysis , 2012 .

[14]  Jürgen Fuhrmann,et al.  Guermond : " Theory and Practice of Finite Elements " , 2017 .

[15]  Aslak Tveito,et al.  Preconditioning by inverting the Laplacian: an analysis of the eigenvalues , 2008 .

[16]  Zdenek Strakos,et al.  Composite convergence bounds based on Chebyshev polynomials and finite precision conjugate gradient computations , 2014, Numerical Algorithms.

[17]  G. Meurant,et al.  The Lanczos and conjugate gradient algorithms in finite precision arithmetic , 2006, Acta Numerica.