Transfer Function Computation for Complex Indoor Channels Using Propagation Graphs

This paper presents a low complexity method for computation of the transfer matrix of wireless channels in complex indoor environments using propagation graphs. Multi-room indoor environments can be represented in a vector signal flow graph with with rooms in the complex structure as nodes and propagation between rooms as branches. The transfer matrix can be computed using Masons theorem which lead to a much-reduced computational complexity.

[1]  Troels Pedersen,et al.  Propagation graph based model for polarized multiantenna wireless channels , 2018, 2018 IEEE Wireless Communications and Networking Conference (WCNC).

[2]  Troels Pedersen,et al.  Modeling of outdoor-to-indoor radio channels via propagation graphs , 2014, 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS).

[3]  Vittorio Degli-Esposti,et al.  Semi-deterministic modeling of diffuse scattering component based on propagation graph theory , 2014, 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC).

[4]  B. Fleury,et al.  Modeling of Reverberant Radio Channels Using Propagation Graphs , 2011, IEEE Transactions on Antennas and Propagation.

[5]  Li Tian,et al.  Millimeter-Wave Channel Modeling Based on A Unified Propagation Graph Theory , 2017, IEEE Communications Letters.