Upconverting nanoparticles for pre‐clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges

Upconverting nanoparticles (UCNPs) are a class of recently developed luminescent biomarkers that - in several aspects - are superior to organic dyes and quantum dots. UCNPs can emit spectrally narrow anti-Stokes shifted light with quantum yields which greatly exceed those of two-photon dyes for fluence rates relevant for deep tissue imaging. Compared with conventionally used Stokes-shifting fluorophores, UCNP-based imaging systems can acquire completely autofluorescence-free data with superb contrast. For diffuse optical imaging, the multiphoton process involved in the upconversion process can be used to obtain images with unprecedented resolution. These unique properties make UCNPs extremely attractive in the field of biophotonics. UCNPs have already been applied in microscopy, small-animal imaging, multi-modal imaging, highly sensitive bioassays, temperature sensing and photodynamic therapy. In this review, the current state-of-the-art UCNPs and their applications for diffuse imaging, microscopy and sensing targeted towards solving essential biological issues are discussed.

[1]  Shanhui Xu,et al.  Energy transfer between Yb3+ and Er3+ in barium gallogermanate glass , 2009 .

[2]  Wei Feng,et al.  Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-Ray computed tomography and magnetic resonance. , 2012, Biomaterials.

[3]  Lilia Coronato Courrol,et al.  Population inversion of G14 excited state of Tm3+ investigated by means of numerical solutions of the rate equations system in Yb:Tm:Nd:LiYF4 crystal , 2009 .

[4]  H Anholt,et al.  Photochemical internalization: a novel technology for delivery of macromolecules into cytosol. , 1999, Cancer research.

[5]  D. Gamelin,et al.  Design of luminescent inorganic materials: new photophysical processes studied by optical spectroscopy. , 2000, Accounts of chemical research.

[6]  Depu Chen,et al.  Synthesis and characterization of efficient near-infrared upconversion Yb and Tm codoped NaYF4 nanocrystal reporter , 2007 .

[7]  Suwen Li,et al.  Polyol-mediated syntheses and characterizations of NaYF4, NH4Y3F10 and YF3 nanocrystals/sub-microcrystals , 2008 .

[8]  Guanying Chen,et al.  Enhancement of the upconversion radiation in Y2O3:Er3+ nanocrystals by codoping with Li+ ions , 2008 .

[9]  Shyam Bahadur Rai,et al.  Er3+/Yb3+ codoped Gd2O3 nano-phosphor for optical thermometry , 2009 .

[10]  Josef Hormes,et al.  Microfluidic synthesis of nanomaterials. , 2008, Small.

[11]  F. Vetrone,et al.  Near-Infrared-to-Blue Upconversion in Colloidal BaYF5:Tm3+, Yb3+ Nanocrystals , 2009 .

[12]  Tero Soukka,et al.  Upconverting phosphors in a dual-parameter LRET-based hybridization assay. , 2009, The Analyst.

[13]  Shanshan Huang,et al.  Rare Earth Fluorides Nanowires/Nanorods Derived from Hydroxides: Hydrothermal Synthesis and Luminescence Properties , 2009 .

[14]  Terry M. Peters,et al.  Three-dimensional multimodal image-guidance for neurosurgery , 1996, IEEE Trans. Medical Imaging.

[15]  Thomas Laurell,et al.  Synthesis of NaYF4 : Yb3+/Er3+ upconverting nanocrystals in a capillary-based continuous microfluidic reaction system , 2011, BiOS.

[16]  A. Yodh,et al.  Diffuse Optical Tomography of Cerebral Blood Flow, Oxygenation, and Metabolism in Rat during Focal Ischemia , 2003, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[17]  Bin Dong,et al.  Optical thermometry through infrared excited green upconversion emissions in Er3+–Yb3+ codoped Al2O3 , 2007 .

[18]  Christopher G. Morgan,et al.  The Active‐Core/Active‐Shell Approach: A Strategy to Enhance the Upconversion Luminescence in Lanthanide‐Doped Nanoparticles , 2009 .

[19]  A. S. Gouveia-Neto,et al.  Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass , 1998 .

[20]  Naomi J Halas,et al.  Fluorescence enhancement by Au nanostructures: nanoshells and nanorods. , 2009, ACS nano.

[21]  Stefan Andersson-Engels,et al.  Photodynamic therapy: superficial and interstitial illumination. , 2010, Journal of biomedical optics.

[22]  Ji Chen,et al.  Facile EG/ionic liquid interfacial synthesis of uniform RE(3+) doped NaYF(4) nanocubes. , 2010, Chemical communications.

[23]  Glauco S. Maciel,et al.  Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor , 2004 .

[24]  Qing Peng,et al.  Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. , 2005, Angewandte Chemie.

[25]  Zhiguo Zhang,et al.  Near vacuum ultraviolet luminescence of Gd3+ and Er3+ ions generated by super saturation upconversion processes. , 2009, Optics express.

[26]  John-Christopher Boyer,et al.  Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. , 2010, Nanoscale.

[27]  H. Tanke,et al.  Detection of cell and tissue surface antigens using up-converting phosphors: a new reporter technology. , 1999, Analytical biochemistry.

[28]  Chunhua Yan,et al.  Optically active uniform potassium and lithium rare earth fluoride nanocrystals derived from metal trifluroacetate precursors. , 2009, Dalton transactions.

[29]  P. Schuck,et al.  Concentrating and recycling energy in lanthanide codopants for efficient and spectrally pure emission: the case of NaYF4:Er3+/Tm3+ upconverting nanocrystals. , 2012, The journal of physical chemistry. B.

[30]  D. Pecile,et al.  Comparison and efficiency of materials for summation of photons assisted by energy transfer , 1973 .

[31]  B. Wilson,et al.  In Vivo Fluorescence Spectroscopy and Imaging for Oncological Applications , 1998, Photochemistry and photobiology.

[32]  Sailing He,et al.  Enhancing fluorescence of quantum dots by silica-coated gold nanorods under one- and two-photon excitation. , 2010, Optics express.

[33]  D. Zhao,et al.  Synthesis of uniform rare earth fluoride (NaMF4) nanotubes by in situ ion exchange from their hydroxide [M(OH)3] parents. , 2009, ACS nano.

[34]  Y. Ju,et al.  The Hidden Effects of Particle Shape and Criteria for Evaluating the Upconversion Luminescence of the Lanthanide Doped Nanophosphors , 2010 .

[35]  Yun Sun,et al.  Fluorine-18-labeled Gd3+/Yb3+/Er3+ co-doped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging. , 2011, Biomaterials.

[36]  Yujie Xiong,et al.  Modification of NaYF4:Yb,Er@SiO2 Nanoparticles with Gold Nanocrystals for Tunable Green-to-Red Upconversion Emissions , 2011 .

[37]  Tymish Y. Ohulchanskyy,et al.  High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. , 2008, Nano letters.

[38]  A. Wilkinson,et al.  Delineating Mechanisms of Upconversion Enhancement by Li+ Codoping in Y2SiO5:Pr3+ , 2012 .

[39]  R. Weissleder,et al.  Fluorescence molecular tomography resolves protease activity in vivo , 2002, Nature Medicine.

[40]  S. Rogelj,et al.  Design of a highly sensitive and specific nucleotide sensor based on photon upconverting particles. , 2006, Journal of the American Chemical Society.

[41]  Frank C J M van Veggel,et al.  Surface modification of upconverting NaYF4 nanoparticles with PEG-phosphate ligands for NIR (800 nm) biolabeling within the biological window. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[42]  Guanying Chen,et al.  Ultrasmall monodisperse NaYF(4):Yb(3+)/Tm(3+) nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence. , 2010, ACS nano.

[43]  Zhuang Liu,et al.  Upconversion nanophosphors for small-animal imaging. , 2012, Chemical Society reviews.

[44]  Zhigang Chen,et al.  Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors. , 2009, Analytical chemistry.

[45]  M. Bawendi,et al.  Renal clearance of quantum dots , 2007, Nature Biotechnology.

[46]  M. Schweiger,et al.  Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans. , 2007, Optics express.

[47]  Jun Lin,et al.  Rare earth fluoride nano-/microcrystals: synthesis, surface modification and application , 2010 .

[48]  X. Duan,et al.  Highly spectral dependent enhancement of upconversion emission with sputtered gold island films. , 2011, Chemical communications.

[49]  Yanqing Hua,et al.  Multifunctional nanoprobes for upconversion fluorescence, MR and CT trimodal imaging. , 2012, Biomaterials.

[50]  Okuhata,et al.  Delivery of diagnostic agents for magnetic resonance imaging. , 1999, Advanced drug delivery reviews.

[51]  N. A. Mufti,et al.  Upconverting phosphor reporters in immunochromatographic assays. , 2001, Analytical biochemistry.

[52]  Zhiguo Zhang,et al.  Upconversion Emission Enhancement in Yb3+/Er3+-Codoped Y2O3 Nanocrystals by Tridoping with Li+ Ions , 2008 .

[53]  Ya-Wen Zhang,et al.  High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. , 2006, Journal of the American Chemical Society.

[54]  G. Chow,et al.  Synthesis of Hexagonal‐Phase NaYF4:Yb,Er and NaYF4:Yb,Tm Nanocrystals with Efficient Up‐Conversion Fluorescence , 2006 .

[55]  Stefan Andersson-Engels,et al.  Multibeam fluorescence diffuse optical tomography using upconverting nanoparticles. , 2010, Optics letters.

[56]  Xiaowei Zhuang,et al.  Nano-imaging with Storm. , 2009, Nature photonics.

[57]  Wenjun Yang,et al.  Synthesis, Characterization, and Biological Application of Size-Controlled Nanocrystalline NaYF4:Yb,Er Infrared-to-Visible Up-Conversion Phosphors , 2004 .

[58]  Paras N. Prasad,et al.  Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm. , 2011, ACS nano.

[59]  Yibin Kang,et al.  Pegylated Composite Nanoparticles Containing Upconverting Phosphors and meso‐Tetraphenyl porphine (TPP) for Photodynamic Therapy , 2011 .

[60]  Yadong Li,et al.  Synthesis of complex rare earth fluoride nanocrystal phosphors , 2006, Nanotechnology.

[61]  Yan Li,et al.  Dopant-controlled synthesis of water-soluble hexagonal NaYF4 nanorods with efficient upconversion fluorescence for multicolor bioimaging , 2010 .

[62]  B. Gates,et al.  Two-way photoswitching using one type of near-infrared light, upconverting nanoparticles, and changing only the light intensity. , 2010, Journal of the American Chemical Society.

[63]  Gang Han,et al.  Combinatorial discovery of lanthanide-doped nanocrystals with spectrally pure upconverted emission. , 2012, Nano letters.

[64]  Louis A. Cuccia,et al.  Controlled Synthesis and Water Dispersibility of Hexagonal Phase NaGdF4:Ho3+/Yb3+ Nanoparticles , 2009 .

[65]  R. Sam Niedbala,et al.  Up-converting phosphor reporters for nucleic acid microarrays , 2001, Nature Biotechnology.

[66]  Wei Feng,et al.  Core-shell Fe3O4@NaLuF4:Yb,Er/Tm nanostructure for MRI, CT and upconversion luminescence tri-modality imaging. , 2012, Biomaterials.

[67]  Ashim K. Mitra,et al.  Advanced Drug Delivery , 2013 .

[68]  Gregory S Harms,et al.  Upconverting nanoparticles for nanoscale thermometry. , 2011, Angewandte Chemie.

[69]  Stefano Taccheo,et al.  Measurement of the energy transfer and upconversion constants in Er–Yb-doped phosphate glass , 1999 .

[70]  William H. Wright,et al.  Upconverting Reporters for Biomedical Diagnostics: Applications in Antibody and DNA Detection , 1996, Biomedical Optical Spectroscopy and Diagnostics.

[71]  Hongwei Song,et al.  Polyol-Mediated Synthesis of Hexagonal LaF3 Nanoplates Using NaNO3 as a Mineralizer , 2009 .

[72]  J. Ripoll,et al.  Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[73]  S. Arridge,et al.  Optical tomography: forward and inverse problems , 2009, 0907.2586.

[74]  Hong Zhang,et al.  Ionothermal synthesis of hexagonal-phase NaYF(4):Yb(3+),Er(3+)/Tm(3+) upconversion nanophosphors. , 2009, Chemical communications.

[75]  D. Zhao,et al.  Shape, size, and phase-controlled rare-Earth fluoride nanocrystals with optical up-conversion properties. , 2009, Chemistry.

[76]  A. Polman,et al.  Plasmon-enhanced erbium luminescence , 2006 .

[77]  F. Huang,et al.  Dopant-induced phase transition: a new strategy of synthesizing hexagonal upconversion NaYF4 at low temperature. , 2011, Chemical communications.

[78]  Na Man,et al.  Rare earth oxide nanocrystals induce autophagy in HeLa cells. , 2009, Small.

[79]  M. Venturini,et al.  Photodynamic Antifungal Chemotherapy † , 2012, Photochemistry and photobiology.

[80]  Xueru Zhang,et al.  Optical thermometry through green and red upconversion emissions in Er3+/Yb3+/Li+:ZrO2 nanocrystals , 2011 .

[81]  Can T. Xu,et al.  Use of nonlinear upconverting nanoparticles provides increased spatial resolution in fluorescence diffuse imaging. , 2010, Optics letters.

[82]  G. Chow,et al.  Synthesis of LiYF4, BaYF5, and NaLaF4 optical nanocrystals. , 2007, Journal of nanoscience and nanotechnology.

[83]  Yadong Li,et al.  Na(Y1.5 Na0.5)F6 single-crystal nanorods as multicolor luminescent materials. , 2006, Nano letters.

[84]  S. Hell,et al.  STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis , 2006, Nature.

[85]  Mizuo Maeda,et al.  Cyclic RGD peptide-labeled upconversion nanophosphors for tumor cell-targeted imaging. , 2009, Biochemical and biophysical research communications.

[86]  F. Auzel Upconversion and anti-Stokes processes with f and d ions in solids. , 2004, Chemical reviews.

[87]  Xiaoguang Li,et al.  Selected synthesis of cubic and hexagonal NaYF4 crystals via a complex-assisted hydrothermal route , 2006 .

[88]  W. Soboyejo,et al.  Biofunctionalization, cytotoxicity, and cell uptake of lanthanide doped hydrophobically ligated NaYF4 upconversion nanophosphors , 2008 .

[89]  Jianhua Hao,et al.  Towards pure near-infrared to near-infrared upconversion of multifunctional GdF(3):Yb(3+),Tm(3+) nanoparticles. , 2010, Optics express.

[90]  Zhi-Gang Chen,et al.  Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors. , 2009, Biomaterials.

[91]  Jun Lin,et al.  Colloidal synthesis and remarkable enhancement of the upconversion luminescence of BaGdF5:Yb3+/Er3+ nanoparticles by active-shell modification , 2011 .

[92]  Daniel R. Gamelin,et al.  Upconversion Processes in Transition Metal and Rare Earth Metal Systems , 2001 .

[93]  Tero Soukka,et al.  Homogeneous assay technology based on upconverting phosphors. , 2005, Analytical chemistry.

[94]  Ann-Marie Wennberg,et al.  Guidelines on the use of photodynamic therapy for nonmelanoma skin cancer: an international consensus. International Society for Photodynamic Therapy in Dermatology, 2005. , 2007, Journal of the American Academy of Dermatology.

[95]  W. Parak Colloidal Quantum Dots/Nanocrystals for Biomedical Applications VI , 2011 .

[96]  E. Miller,et al.  Tomographic optical breast imaging guided by three-dimensional mammography. , 2003, Applied optics.

[97]  C. S. Lim,et al.  Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping , 2010, Nature.

[98]  N. Bloembergen,et al.  Solid State Infrared Quantum Counters , 1959 .

[99]  Tero Soukka,et al.  Fluorescence-quenching-based enzyme-activity assay by using photon upconversion. , 2008, Angewandte Chemie.

[100]  Jun Lin,et al.  Monodisperse core-shell structured up-conversion Yb(OH)CO₃@YbPO₄:Er³+ hollow spheres as drug carriers. , 2011, Biomaterials.

[101]  Meng Wang,et al.  Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF(4):Yb,Er upconversion nanoparticles. , 2009, ACS nano.

[102]  A. Yodh,et al.  Diffuse optics for tissue monitoring and tomography , 2010, Reports on progress in physics. Physical Society.

[103]  Yiguang Ju,et al.  A single-step synthesis and the kinetic mechanism for monodisperse and hexagonal-phase NaYF4:Yb, Er upconversion nanophosphors , 2009, Nanotechnology.

[104]  Ya-Wen Zhang,et al.  Size- and Phase-Controlled Synthesis of Monodisperse NaYF4:Yb,Er Nanocrystals from a Unique Delayed Nucleation Pathway Monitored with Upconversion Spectroscopy , 2007 .

[105]  Kian Meng Lim,et al.  NIR-to-visible upconversion nanoparticles for fluorescent labeling and targeted delivery of siRNA , 2009, Nanotechnology.

[106]  Igor Nabiev,et al.  Enhanced Luminescence of CdSe Quantum Dots on Gold Colloids , 2002 .

[107]  Chunhua Yan,et al.  Rare earth upconversion nanophosphors: synthesis, functionalization and application as biolabels and energy transfer donors , 2010 .

[108]  J. Ashburner,et al.  Multimodal Image Coregistration and Partitioning—A Unified Framework , 1997, NeuroImage.

[109]  Markus P. Hehlen,et al.  Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems , 2000 .

[110]  Yang Wei,et al.  Polyol-mediated synthesis and luminescence of lanthanide-doped NaYF4 nanocrystal upconversion phosphors , 2008 .

[111]  Feng Wang,et al.  Multicolour PEI/NaGdF4:Ce3+,Ln3+ nanocrystals by single-wavelength excitation , 2007 .

[112]  Alan R. Lowe,et al.  Selectivity Mechanism of the Nuclear Pore Complex Characterized by Single Cargo Tracking , 2010, Nature.

[113]  Taeghwan Hyeon,et al.  Nonblinking and Nonbleaching Upconverting Nanoparticles as an Optical Imaging Nanoprobe and T1 Magnetic Resonance Imaging Contrast Agent , 2009 .

[114]  Quan Zhang,et al.  Coregistered tomographic x-ray and optical breast imaging: initial results. , 2005, Journal of biomedical optics.

[115]  H. Güdel,et al.  Anomalous power dependence of sensitized upconversion luminescence , 2005 .

[116]  Hai Guo,et al.  Facile synthesis, structural and optical characterization of LnF3:Re nanocrystals by ionic liquid-based hydrothermal process , 2009 .

[117]  Tymish Y. Ohulchanskyy,et al.  Combined Optical and MR Bioimaging Using Rare Earth Ion Doped NaYF4 Nanocrystals , 2009 .

[118]  Francisco Sanz-Rodríguez,et al.  Temperature sensing using fluorescent nanothermometers. , 2010, ACS nano.

[119]  Xueyuan Chen,et al.  Upconversion nanoparticles in biological labeling, imaging, and therapy. , 2010, The Analyst.

[120]  T. Nann,et al.  Monodisperse upconverting nanocrystals by microwave-assisted synthesis. , 2009, ACS nano.

[121]  Anand T. N. Kumar,et al.  Feasibility of in vivo imaging of fluorescent proteins using lifetime contrast. , 2009, Optics letters.

[122]  A. Singh,et al.  Upconversion and optical thermometry in Ho3+:TeO2 glass, effect of addition of PbO2 and BaCO3 , 2007 .

[123]  M. Haase,et al.  Highly Efficient Multicolour Upconversion Emission in Transparent Colloids of Lanthanide‐Doped NaYF4 Nanocrystals , 2004 .

[124]  Soren D. Konecky,et al.  Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI. , 2005, Medical physics.

[125]  Xueru Zhang,et al.  Optical temperature sensor through infrared excited blue upconversion emission in Tm3 +/Yb3 + codoped Y2O3 , 2012 .

[126]  Stefan Andersson-Engels,et al.  Fluorescence diffuse optical tomography using upconverting nanoparticles , 2009 .

[127]  Xin Li,et al.  A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging , 2010, Nanotechnology.

[128]  Chun Jiang,et al.  Theoretical Model of Yb $^{3 + }$ -Er $^{3 + }$ -Tm $^{3 + }$ -Codoped System for White Light Generation , 2009 .

[129]  Shuk Han Cheng,et al.  Polymer-coated NaYF₄:Yb³⁺, Er³⁺ upconversion nanoparticles for charge-dependent cellular imaging. , 2011, ACS nano.

[130]  T. Skotland,et al.  Whole-body section fluorescence imaging--a novel method for tissue distribution studies of fluorescent substances. , 2009, Contrast media & molecular imaging.

[131]  Manoj Kumar,et al.  Versatile photosensitizers for photodynamic therapy at infrared excitation. , 2007, Journal of the American Chemical Society.

[132]  Liang Yan,et al.  Mn2+ Dopant‐Controlled Synthesis of NaYF4:Yb/Er Upconversion Nanoparticles for in vivo Imaging and Drug Delivery , 2012, Advanced materials.

[133]  Chenghui Liu,et al.  Monodisperse, size-tunable and highly efficient β-NaYF4:Yb,Er(Tm) up-conversion luminescent nanospheres: controllable synthesis and their surface modifications , 2009 .

[134]  Yang Yang,et al.  Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. , 2010, Biomaterials.

[135]  B. Wilson,et al.  The physics, biophysics and technology of photodynamic therapy , 2008, Physics in medicine and biology.

[136]  K. Svanberg,et al.  In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy. , 2007, Journal of biomedical optics.

[137]  Ralph H. Page,et al.  Upconversion-pumped luminescence efficiency of rare-earth-doped hosts sensitized with trivalent ytterbium , 1997 .

[138]  Qing Peng,et al.  A general strategy for nanocrystal synthesis , 2005, Nature.

[139]  Juan Wang,et al.  Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. , 2010, Angewandte Chemie.

[140]  Norman P. Barnes,et al.  Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4 , 1998 .

[141]  K. Berg,et al.  Photochemical internalization: a new tool for drug delivery. , 2007, Current pharmaceutical biotechnology.

[142]  Stefan Andersson-Engels,et al.  High-resolution fluorescence diffuse optical tomography developed with nonlinear upconverting nanoparticles. , 2012, ACS nano.

[143]  Fuyou Li,et al.  High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. , 2009, Analytical chemistry.

[144]  Chunya Li,et al.  Upconversion fluorescence resonance energy transfer based biosensor for ultrasensitive detection of matrix metalloproteinase-2 in blood. , 2012, Analytical chemistry.

[145]  Yangyang He,et al.  Temperature Sensing and In Vivo Imaging by Molybdenum Sensitized Visible Upconversion Luminescence of Rare‐Earth Oxides , 2012, Advanced materials.

[146]  Ning Kang,et al.  Rapid microwave-enhanced hydrothermal synthesis and shape evolution of uniform NaGdF4:Yb, Er (Tm/Ho) nanocrystals with upconversion and paramagnetic properties , 2012, Nanotechnology.

[147]  Andrew J deMello,et al.  Microfluidic routes to the controlled production of nanoparticles. , 2002, Chemical communications.

[148]  Ququan Wang,et al.  Neurotoxin-conjugated upconversion nanoprobes for direct visualization of tumors under near-infrared irradiation. , 2010, Biomaterials.

[149]  H Tanke,et al.  Use of up-converting phosphor reporters in lateral-flow assays to detect specific nucleic acid sequences: a rapid, sensitive DNA test to identify human papillomavirus type 16 infection. , 2001, Clinical chemistry.

[150]  Zhengquan Li,et al.  Monodisperse silica-coated polyvinylpyrrolidone/NaYF(4) nanocrystals with multicolor upconversion fluorescence emission. , 2006, Angewandte Chemie.

[151]  Chenghui Liu,et al.  Morphology- and phase-controlled synthesis of monodisperse lanthanide-doped NaGdF4nanocrystals with multicolor photoluminescence , 2009 .

[152]  Lehui Lu,et al.  A high-performance ytterbium-based nanoparticulate contrast agent for in vivo X-ray computed tomography imaging. , 2012, Angewandte Chemie.

[153]  Yong Zhang,et al.  Biocompatibility of silica coated NaYF(4) upconversion fluorescent nanocrystals. , 2008, Biomaterials.

[154]  Oliver Benson,et al.  Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals. , 2010, Nano letters.

[155]  Meng Wang,et al.  Two-phase solvothermal synthesis of rare-earth doped NaYF4 upconversion fluorescent nanocrystals , 2009 .

[156]  Zhuang Liu,et al.  Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. , 2011, Biomaterials.

[157]  David A Boas,et al.  Noninvasive measurement of neuronal activity with near-infrared optical imaging , 2004, NeuroImage.

[158]  Tero Soukka,et al.  Upconversion fluorescence resonance energy transfer in a homogeneous immunoassay for estradiol. , 2006, Analytical chemistry.

[159]  Fu-ping Wang,et al.  Upconversion mechanism for two-color emission in rare-earth-ion-dopedZrO2nanocrystals , 2007 .

[160]  Borys Shuter,et al.  Hybrid lanthanide nanoparticles with paramagnetic shell coated on upconversion fluorescent nanocrystals. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[161]  M. Gustafsson Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy , 2000, Journal of microscopy.

[162]  Xueru Zhang,et al.  The Effect of Li on the Spectrum of Er3+ in Li- and Er-Codoped ZnO Nanocrystals , 2008 .

[163]  R. E. Thoma,et al.  The Sodium Fluoride-Lanthanide Trifluoride Systems , 1966 .

[164]  Tero Soukka,et al.  Tandem dye acceptor used to enhance upconversion fluorescence resonance energy transfer in homogeneous assays. , 2007, Analytical chemistry.

[165]  N. Zheludev,et al.  Cathodo- and photoluminescence in Yb(3+)-Er(3+) co-doped PbF(2) nanoparticles. , 2010, Optics express.

[166]  Yong Zhang,et al.  Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. , 2008, Biomaterials.

[167]  V. Ntziachristos Going deeper than microscopy: the optical imaging frontier in biology , 2010, Nature Methods.

[168]  F. C. Cassanjes,et al.  Blue upconversion enhancement by a factor of 200 in Tm3+-doped tellurite glass by codoping with Nd3+ ions , 2002 .

[169]  G. Chow,et al.  Colloidal LaF3:Yb,Er, LaF3:Yb,Ho and LaF3:Yb,Tm nanocrystals with multicolor upconversion fluorescence , 2005 .

[170]  Fuyou Li,et al.  Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. , 2008, Journal of the American Chemical Society.

[171]  Jun Lin,et al.  Synthesis of Magnetic, Up‐Conversion Luminescent, and Mesoporous Core–Shell‐Structured Nanocomposites as Drug Carriers , 2010 .

[172]  N. Yao,et al.  Synthesis of monodisperse hexagonal NaYF4:Yb, Ln (Ln = Er, Ho and Tm) upconversion nanocrystals in TOPO , 2007 .

[173]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[174]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .

[175]  Michael R Hamblin,et al.  Strategies to Potentiate Antimicrobial Photoinactivation by Overcoming Resistant Phenotypes † , 2012, Photochemistry and photobiology.

[176]  Yong Zhang,et al.  Nanoparticles in photodynamic therapy: an emerging paradigm. , 2008, Advanced drug delivery reviews.

[177]  Gang Han,et al.  Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals. , 2012, ACS nano.

[178]  Yadong Li,et al.  Upconversion luminescence of monodisperse CaF2:Yb(3+)/Er(3+) nanocrystals. , 2009, Journal of the American Chemical Society.

[179]  Lanlan Zhong,et al.  Enhancement of Near-Infrared-to-Visible Upconversion Luminescence Using Engineered Plasmonic Gold Surfaces , 2011 .

[180]  Zhiguo Zhang,et al.  Upconversion emission tuning from green to red in Yb3+/Ho3+-codoped NaYF4 nanocrystals by tridoping with Ce3+ ions , 2009, Nanotechnology.

[181]  Wei Feng,et al.  Cubic sub-20 nm NaLuF(4)-based upconversion nanophosphors for high-contrast bioimaging in different animal species. , 2012, Biomaterials.

[182]  P. Choyke,et al.  New strategies for fluorescent probe design in medical diagnostic imaging. , 2010, Chemical reviews.

[183]  Kai Yang,et al.  Highly-sensitive multiplexed in vivo imaging using pegylated upconversion nanoparticles , 2010 .

[184]  Lili Wang,et al.  Improved 800 nm emission of Tm³⁺ sensitized by Yb³⁺ and Ho³⁺ in β-NaYF₄ nanocrystals under 980 nm excitation. , 2012, Optics express.

[185]  R. E. Thoma,et al.  Phase Equilibria in the System Sodium Fluoride-Yttrium Fluoride , 1963 .

[186]  Chuanbin Mao,et al.  NIR-responsive silica-coated NaYbF(4):Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells. , 2009, The journal of physical chemistry. C, Nanomaterials and interfaces.

[187]  Qian Liu,et al.  Multifunctional rare-earth self-assembled nanosystem for tri-modal upconversion luminescence /fluorescence /positron emission tomography imaging. , 2011, Biomaterials.

[188]  Fan Zhang,et al.  Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence. , 2007, Angewandte Chemie.

[189]  S R Arridge,et al.  Recent advances in diffuse optical imaging , 2005, Physics in medicine and biology.

[190]  Zhengquan Li,et al.  An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence , 2008, Nanotechnology.

[191]  Yanhua Song,et al.  Facile chemical conversion synthesis and luminescence properties of uniform Ln3+ (Ln = Eu, Tb)-doped NaLuF4 nanowires and LuBO3 microdisks. , 2009, Inorganic chemistry.

[192]  Fiorenzo Vetrone,et al.  Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. , 2006, Journal of the American Chemical Society.

[193]  J. Lippincott-Schwartz,et al.  High-density mapping of single-molecule trajectories with photoactivated localization microscopy , 2008, Nature Methods.

[194]  H. Güdel,et al.  High-resolution optical spectroscopy of Na(3)[Ln(dpa)(3)].13H(2)O with Ln = Er(3+), Tm(3+), Yb(3+). , 2002, Inorganic chemistry.

[195]  C. H. Wang,et al.  Enhanced upconverted photoluminescence in Er3+ and Yb3+ codoped ZnO nanocrystals with and without Li+ ions , 2008 .

[196]  Shan Jiang,et al.  Upconversion nanoparticle-based FRET system for study of siRNA in live cells. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[197]  S. Fischer,et al.  Increasing Upconversion by Plasmon Resonance in Metal Nanoparticles—A Combined Simulation Analysis , 2012, IEEE Journal of Photovoltaics.

[198]  Ya-Wen Zhang,et al.  Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. , 2005, Journal of the American Chemical Society.

[199]  Q. Ma,et al.  Near-infrared quantum dots: synthesis, functionalization and analytical applications. , 2010, The Analyst.

[200]  John-Christopher Boyer,et al.  Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. , 2006, Nano letters.

[201]  Stefan Andersson-Engels,et al.  Autofluorescence insensitive imaging using upconverting nanocrystals in scattering media , 2008 .

[202]  David A Boas,et al.  Assessing the future of diffuse optical imaging technologies for breast cancer management. , 2008, Medical physics.

[203]  Florian Hallermann,et al.  Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions. , 2012, Optics express.

[204]  Kerry R. Delaney,et al.  Two-Photon Upconversion Laser (Scanning and Wide-Field) Microscopy Using Ln3+-Doped NaYF4 Upconverting Nanocrystals: A Critical Evaluation of their Performance and Potential in Bioimaging , 2011 .

[205]  M. A. Yaseen,et al.  Autofluorescence characterization for the early diagnosis of neoplastic changes in DMBA/TPA‐induced mouse skin carcinogenesis , 2005, Lasers in surgery and medicine.

[206]  A. Speghini,et al.  Colloidal Tm3+/Yb3+‐Doped LiYF4 Nanocrystals: Multiple Luminescence Spanning the UV to NIR Regions via Low‐Energy Excitation , 2009 .

[207]  Vasilis Ntziachristos,et al.  Normalized Transillumination of Fluorescent Proteins in Small Animals , 2006, Molecular imaging.

[208]  Vasilis Ntziachristos,et al.  Fluorescence molecular tomography in the presence of background fluorescence , 2006, Physics in medicine and biology.

[209]  J. Cui,et al.  Temperature dependent upconversion luminescence of Yb/Er codoped NaYF4 nanocrystals , 2011 .

[210]  Xueru Zhang,et al.  Enhancement of the upconversion photoluminescence intensity in Li+ and Er3+ codoped Y2O3 nanocrystals , 2008 .

[211]  M. Haase,et al.  Visible light emission upon near-infrared excitation in a transparent solution of nanocrystalline β-NaGdF4: Yb3+, Er3+ , 2005 .

[212]  Gang Han,et al.  Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space. , 2010, Nano letters.

[213]  Hong Yang,et al.  Synthesis of Silver Nanoparticles in a Continuous Flow Tubular Microreactor , 2004 .

[214]  Chenghui Liu,et al.  Controlled synthesis of hexagon shaped lanthanide-doped LaF3 nanoplates with multicolor upconversion fluorescence , 2007 .

[215]  J. Köhler,et al.  Continuous synthesis of gold nanoparticles in a microreactor. , 2005, Nano letters.

[216]  Raoul Kopelman,et al.  Nanoparticles for two-photon photodynamic therapy in living cells. , 2006, Nano letters.

[217]  Y. Mita Luminescence Processes in Yb3+‐Sensitized Rare‐Earth Phosphors , 1972 .

[218]  B. Rice,et al.  In-vivo fluorescence imaging with a multivariate curve resolution spectral unmixing technique. , 2009, Journal of biomedical optics.

[219]  Hui Guo,et al.  Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy. , 2009, Small.

[220]  Yong Zhang,et al.  Small upconverting fluorescent nanoparticles for biomedical applications. , 2010, Small.

[221]  Andreas H Hielscher,et al.  Optical tomographic imaging of small animals. , 2005, Current opinion in biotechnology.

[222]  Weibo Cai,et al.  Multimodality Molecular Imaging of Tumor Angiogenesis , 2008, Journal of Nuclear Medicine.

[223]  Xiaogang Liu,et al.  Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. , 2009, Chemical Society reviews.

[224]  G. Mariotto,et al.  Lanthanide doped upconverting colloidal CaF2 nanoparticles prepared by a single-step hydrothermal method: toward efficient materials with near infrared-to-near infrared upconversion emission. , 2011, Nanoscale.

[225]  Gan-Moog Chow,et al.  Water -soluble NaYF4:Yb,Er (Tm)/NaYF4/Polymer Core/Shell/Shell nanoparticles with significant enhancement of upconversion fluorescence , 2007 .

[226]  J. Bünzli Lanthanide luminescence for biomedical analyses and imaging. , 2010, Chemical reviews.

[227]  B. Pogue,et al.  Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. , 2006, Journal of biomedical optics.

[228]  Le-Le Li,et al.  Ionic liquid-based route to spherical NaYF4 nanoclusters with the assistance of microwave radiation and their multicolor upconversion luminescence. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[229]  Dan Zhao,et al.  Bright-green upconversion emission of hexagonal LaF3 : Yb3+,Er3+ nanocrystals , 2005 .

[230]  Ralph Weissleder,et al.  Upconverting luminescent nanomaterials: application to in vivo bioimaging. , 2009, Chemical communications.

[231]  Yongzhuo Li,et al.  Synthesis and Upconversion Luminescence of Hexagonal‐Phase NaYF4:Yb, Er3+ Phosphors of Controlled Size and Morphology , 2005 .

[232]  D. Rothamer,et al.  Planar imaging thermometry in gaseous flows using upconversion excitation of thermographic phosphors , 2012 .

[233]  Liang Sun,et al.  Experimental study on the surface modification of Y2O3:Tm3+/Yb3+ nanoparticles to enhance upconversion fluorescence and weaken aggregation , 2008, Nanotechnology.

[234]  Chun-Hua Yan,et al.  Clean and Flexible Modification Strategy for Carboxyl/Aldehyde‐Functionalized Upconversion Nanoparticles and Their Optical Applications , 2009 .

[235]  Xun Wang,et al.  Branched NaYF(4) nanocrystals with luminescent properties. , 2007, Inorganic chemistry.

[236]  Yun Sun,et al.  Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties. , 2010, Biomaterials.

[237]  Chun-Hua Yan,et al.  Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb,Tm nanocrystals. , 2011, Biomaterials.

[238]  D. Yuan,et al.  Structure evaluation and highly enhanced luminescence of Dy3+ -doped ZnO nanocrystals by Li+ doping via combustion method. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[239]  Ralph Weissleder,et al.  Design and demonstration of a small-animal up-conversion imager. , 2008, Optics express.

[240]  M. R. Brown,et al.  Long‐term time series analysis of quantum dot encoded cells by deconvolution of the autofluorescence signal , 2010, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[241]  A. Chatziioannou,et al.  Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study , 2005, Physics in medicine and biology.

[242]  Zhengquan Li,et al.  Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles. , 2009, Biomaterials.

[243]  K. Krämer,et al.  Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion , 2005 .

[244]  P. Choyke,et al.  In vivo multiple color lymphatic imaging using upconverting nanocrystals , 2009 .

[245]  Sudheer Kumar Singh,et al.  Multifunctional Er3+–Yb3+ codoped Gd2O3 nanocrystalline phosphor synthesized through optimized combustion route , 2009 .

[246]  Wei Feng,et al.  Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. , 2011, Journal of the American Chemical Society.

[247]  A. Darzi,et al.  Diffuse optical imaging of the healthy and diseased breast: A systematic review , 2008, Breast Cancer Research and Treatment.

[248]  Yang Yang,et al.  High-quality water-soluble and surface-functionalized upconversion nanocrystals as luminescent probes for bioimaging. , 2011, Biomaterials.

[249]  R. Esteban,et al.  Influence of metallic nanoparticles on up-conversion processes , 2008, 0810.1218.

[250]  Dan Wang,et al.  Using 915 nm laser excited Tm³+/Er³+/Ho³+- doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation. , 2011, ACS nano.

[251]  N. A. Mufti,et al.  Upconverting phosphors as reporters for immunoassay , 1998 .

[252]  Shan Jiang,et al.  Multicolor Core/Shell‐Structured Upconversion Fluorescent Nanoparticles , 2008 .

[253]  Shiwei Wu,et al.  Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals , 2009, Proceedings of the National Academy of Sciences.

[254]  Francesco S. Pavone,et al.  Laser imaging and manipulation in cell biology , 2010 .

[255]  A. Speghini,et al.  Upconversion Luminescence in Nanocrystals of Gd3Ga5O12 and Y3Al5O12 Doped with Tb3+−Yb3+ and Eu3+−Yb3+ , 2009 .

[256]  Y.-L. Shen,et al.  Challenges and Outlook , 2010 .

[257]  Zhang Yong,et al.  Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells. , 2008, Nanomedicine.

[258]  Yadong Li,et al.  Controlled Synthesis and Luminescence of Lanthanide Doped NaYF4 Nanocrystals , 2007 .

[259]  Louis A. Cuccia,et al.  Synthesis, Characterization, and Spectroscopy of NaGdF4: Ce3+, Tb3+/NaYF4 Core/Shell Nanoparticles , 2007 .

[260]  Geoffrey A Ozin,et al.  Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. , 2011, Nano letters.

[261]  Chun-Hua Yan,et al.  Uniform Alkaline Earth Fluoride Nanocrystals with Diverse Shapes Grown from Thermolysis of Metal Trifluoroacetates in Hot Surfactant Solutions , 2009 .

[262]  Y. Ju,et al.  Controlled synthesis of lanthanide-doped NaYF4 upconversion nanocrystals via ligand induced crystal phase transition and silica coating , 2007 .

[263]  Hans H. Gorris,et al.  Photon upconverting nanoparticles for luminescent sensing of temperature. , 2012, Nanoscale.

[264]  Xiaogang Liu,et al.  Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. , 2008, Journal of the American Chemical Society.

[265]  Nora Khanarian,et al.  In vivo and scanning electron microscopy imaging of up-converting nanophosphors in Caenorhabditis elegans. , 2006, Nano letters.

[266]  J. Bünzli,et al.  Lanthanide luminescence for functional materials and bio-sciences. , 2010, Chemical Society reviews.

[267]  Marco Pedroni,et al.  NIR-to-NIR two-photon excited CaF2:Tm3+,Yb3+ nanoparticles: multifunctional nanoprobes for highly penetrating fluorescence bio-imaging. , 2011, ACS nano.

[268]  L. Manna,et al.  Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control , 2006, Nature nanotechnology.

[269]  Zhengquan Li,et al.  Facile microemulsion route to coat carbonized glucose on upconversion nanocrystals as high luminescence and biocompatible cell-imaging probes , 2010, Nanotechnology.

[270]  Markus P. Hehlen,et al.  Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors , 2004 .

[271]  Vadim A. Markel,et al.  Fluorescent optical tomography with large data sets. , 2008, Optics letters.

[272]  A. Speghini,et al.  Structural and optical investigation of colloidal Ln3+/Yb3+ co-doped KY3F10 nanocrystals , 2009 .

[273]  M. Schuurmans,et al.  On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f–4f transitions in rare‐earth ions , 1983 .

[274]  Chenghui Liu,et al.  Size and morphology controllable synthesis of oil-dispersible LaF3:Yb,Er upconversion fluorescent nanocrystals via a solid–liquid two-phase approach , 2008 .

[275]  Yang Wei,et al.  Synthesis of Oil-Dispersible Hexagonal-Phase and Hexagonal-Shaped NaYF4:Yb,Er Nanoplates , 2006 .

[276]  M. Haase,et al.  Crystal Phase Control of Luminescing α‐NaGdF4:Eu3+and β‐NaGdF4:Eu3+ Nanocrystals , 2007 .

[277]  A. Patra,et al.  Tuning of Crystal Phase and Luminescence Properties of Eu3+ Doped Sodium Yttrium Fluoride Nanocrystals , 2008 .

[278]  K Svanberg,et al.  In vivo fluorescence imaging for tissue diagnostics. , 1997, Physics in medicine and biology.

[279]  Thomas Nann,et al.  A four-color colloidal multiplexing nanoparticle system. , 2008, ACS nano.

[280]  Mats Nilsson,et al.  Lateral-flow and up-converting phosphor reporters to detect single-stranded nucleic acids in a sandwich-hybridization assay. , 2003, Analytical biochemistry.

[281]  Zhijia Wang,et al.  Novel microwave-assisted solvothermal synthesis of NaYF4:Yb,Er upconversion nanoparticles and their application in cancer cell imaging. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[282]  Yanqing Hua,et al.  A NaYbF4: Tm3+ nanoprobe for CT and NIR-to-NIR fluorescent bimodal imaging. , 2012, Biomaterials.

[283]  Judith Grimm,et al.  Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+ , 2006 .

[284]  Qichun Zhang,et al.  Lanthanide-doped Na(x)ScF(3+x) nanocrystals: crystal structure evolution and multicolor tuning. , 2012, Journal of the American Chemical Society.

[285]  B. Pogue,et al.  Tutorial on diffuse light transport. , 2008, Journal of biomedical optics.

[286]  M. Monici Cell and tissue autofluorescence research and diagnostic applications. , 2005, Biotechnology annual review.

[287]  T. Nann,et al.  Single Quantum Dots in Silica Spheres by Microemulsion Synthesis , 2005 .

[288]  Feng Wang,et al.  Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence , 2006 .

[289]  Vasilis Ntziachristos,et al.  Looking and listening to light: the evolution of whole-body photonic imaging , 2005, Nature Biotechnology.

[290]  Yong Zhang,et al.  Synthesis of hexagonal-phase core-shell NaYF4 nanocrystals with tunable upconversion fluorescence. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[291]  N. Browning,et al.  Plasmonic enhanced emissions from cubic NaYF(4):Yb: Er/Tm nanophosphors. , 2011, Chemistry of materials : a publication of the American Chemical Society.

[292]  A Paul Alivisatos,et al.  High-temperature microfluidic synthesis of CdSe nanocrystals in nanoliter droplets. , 2005, Journal of the American Chemical Society.

[293]  Eric L. Miller,et al.  Hybrid FMT–CT imaging of amyloid-β plaques in a murine Alzheimer's disease model , 2009, NeuroImage.

[294]  Robert Austin,et al.  Nanofabricated upconversion nanoparticles for photodynamic therapy. , 2009, Optics express.

[295]  Guy Marchal,et al.  Multimodality image registration by maximization of mutual information , 1997, IEEE Transactions on Medical Imaging.

[296]  W. Cai,et al.  Enhanced upconversion emission in Yb3+ and Er3+ codoped NaGdF4 nanocrystals by introducing Li+ ions. , 2012, Nanoscale.