A Time-Splitting Finite-Element Stable Approximation for the Ericksen-Leslie Equations

In this paper we propose an unconditional energy-stable time-splitting finite-element scheme for approximating the Ericksen--Leslie equations governing the flow of nematic liquid crystals. These equations are to be solved for a velocity vector field and a scalar pressure as well as a director vector field representing the direction along which the molecules of the liquid crystal are oriented. The algorithm is designed at two levels. First, at the variational level, the velocity, pressure, and director are computed separately, but the director field has to be computed together with an auxiliary variable (associated to the equilibrium equation for the director) in order to deduce a priori energy estimates. Second, at the algebraic level, one can avoid computing such an auxiliary variable if this is approximated by a piecewise constant finite-element space. Therefore, these two steps give rise to a numerical algorithm that computes separately only the primary variables: velocity, pressure, and director vecto...

[1]  Andreas Prohl,et al.  Finite Element Approximations of the Ericksen-Leslie Model for Nematic Liquid Crystal Flow , 2008, SIAM J. Numer. Anal..

[2]  Chun Liu,et al.  Approximation of Liquid Crystal Flows , 2000, SIAM J. Numer. Anal..

[3]  N. Walkington,et al.  Mixed Methods for the Approximation of Liquid Crystal Flows , 2002 .

[4]  Juan Vicente Gutiérrez-Santacreu,et al.  An Overview on Numerical Analyses of Nematic Liquid Crystal Flows , 2011 .

[5]  Francisco Guillén-González,et al.  Mixed formulation, approximation and decoupling algorithm for a penalized nematic liquid crystals model , 2011, Math. Comput..

[6]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[7]  Juan Vicente Gutiérrez-Santacreu,et al.  A linear mixed finite element scheme for a nematic Ericksen–Leslie liquid crystal model , 2013 .

[8]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[9]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I) , 1969 .

[10]  A. Isihara,et al.  Theory of Liquid Crystals , 1972 .

[11]  J. Ericksen Conservation Laws for Liquid Crystals , 1961 .

[12]  Miguel A. Fernández,et al.  Galerkin Finite Element Methods with Symmetric Pressure Stabilization for the Transient Stokes Equations: Stability and Convergence Analysis , 2008, SIAM J. Numer. Anal..

[13]  F. M. Leslie Some constitutive equations for liquid crystals , 1968 .

[14]  Sébastian Minjeaud An unconditionally stable uncoupled scheme for a triphasic Cahn–Hilliard/Navier–Stokes model , 2013 .

[15]  F. M. Leslie Theory of Flow Phenomena in Liquid Crystals , 1979 .

[16]  R. Rannacher On chorin's projection method for the incompressible navier-stokes equations , 1992 .

[17]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[18]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[19]  Xue-Cheng Tai,et al.  A Saddle Point Approach to the Computation of Harmonic Maps , 2009, SIAM J. Numer. Anal..

[20]  S. Badia On stabilized finite element methods based on the Scott-Zhang projector: circumventing the inf-sup condition for the Stokes problem , 2012 .

[21]  F. Lin,et al.  Static and dynamic theories of liquid crystals , 2001 .

[22]  J. Ericksen Liquid crystals with variable degree of orientation , 1991 .

[23]  Santiago Badia,et al.  Finite element approximation of nematic liquid crystal flows using a saddle-point structure , 2011, J. Comput. Phys..

[24]  Juan Vicente Gutiérrez-Santacreu,et al.  Unconditionally stable operator splitting algorithms for the incompressible magnetohydrodynamics system discretized by a stabilized finite element formulation based on projections , 2013 .

[25]  F. Lin Nonlinear theory of defects in nematic liquid crystals; Phase transition and flow phenomena , 1989 .

[26]  C. Dohrmann,et al.  A stabilized finite element method for the Stokes problem based on polynomial pressure projections , 2004 .

[27]  Chun Liu,et al.  Simulations of singularity dynamics in liquid crystal flows: A C0 finite element approach , 2006, J. Comput. Phys..

[28]  Hui Zhang,et al.  An energy law preserving C0 finite element scheme for simulating the kinematic effects in liquid crystal dynamics , 2007, J. Comput. Phys..

[29]  Jie Shen On error estimates of projection methods for Navier-Stokes equations: first-order schemes , 1992 .

[30]  F. Lin,et al.  Nonparabolic dissipative systems modeling the flow of liquid crystals , 1995 .

[31]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[32]  J. Ericksen Continuum theory of nematic liquid crystals , 1987 .

[33]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .