A Time-Splitting Finite-Element Stable Approximation for the Ericksen-Leslie Equations
暂无分享,去创建一个
Francisco Guillén-González | Juan Vicente Gutiérrez-Santacreu | R. C. Cabrales | J. V. Gutiérrez-Santacreu | F. Guillén-González
[1] Andreas Prohl,et al. Finite Element Approximations of the Ericksen-Leslie Model for Nematic Liquid Crystal Flow , 2008, SIAM J. Numer. Anal..
[2] Chun Liu,et al. Approximation of Liquid Crystal Flows , 2000, SIAM J. Numer. Anal..
[3] N. Walkington,et al. Mixed Methods for the Approximation of Liquid Crystal Flows , 2002 .
[4] Juan Vicente Gutiérrez-Santacreu,et al. An Overview on Numerical Analyses of Nematic Liquid Crystal Flows , 2011 .
[5] Francisco Guillén-González,et al. Mixed formulation, approximation and decoupling algorithm for a penalized nematic liquid crystals model , 2011, Math. Comput..
[6] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[7] Juan Vicente Gutiérrez-Santacreu,et al. A linear mixed finite element scheme for a nematic Ericksen–Leslie liquid crystal model , 2013 .
[8] Jie Shen,et al. An overview of projection methods for incompressible flows , 2006 .
[9] R. Temam. Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I) , 1969 .
[10] A. Isihara,et al. Theory of Liquid Crystals , 1972 .
[11] J. Ericksen. Conservation Laws for Liquid Crystals , 1961 .
[12] Miguel A. Fernández,et al. Galerkin Finite Element Methods with Symmetric Pressure Stabilization for the Transient Stokes Equations: Stability and Convergence Analysis , 2008, SIAM J. Numer. Anal..
[13] F. M. Leslie. Some constitutive equations for liquid crystals , 1968 .
[14] Sébastian Minjeaud. An unconditionally stable uncoupled scheme for a triphasic Cahn–Hilliard/Navier–Stokes model , 2013 .
[15] F. M. Leslie. Theory of Flow Phenomena in Liquid Crystals , 1979 .
[16] R. Rannacher. On chorin's projection method for the incompressible navier-stokes equations , 1992 .
[17] Frédéric Hecht,et al. New development in freefem++ , 2012, J. Num. Math..
[18] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[19] Xue-Cheng Tai,et al. A Saddle Point Approach to the Computation of Harmonic Maps , 2009, SIAM J. Numer. Anal..
[20] S. Badia. On stabilized finite element methods based on the Scott-Zhang projector: circumventing the inf-sup condition for the Stokes problem , 2012 .
[21] F. Lin,et al. Static and dynamic theories of liquid crystals , 2001 .
[22] J. Ericksen. Liquid crystals with variable degree of orientation , 1991 .
[23] Santiago Badia,et al. Finite element approximation of nematic liquid crystal flows using a saddle-point structure , 2011, J. Comput. Phys..
[24] Juan Vicente Gutiérrez-Santacreu,et al. Unconditionally stable operator splitting algorithms for the incompressible magnetohydrodynamics system discretized by a stabilized finite element formulation based on projections , 2013 .
[25] F. Lin. Nonlinear theory of defects in nematic liquid crystals; Phase transition and flow phenomena , 1989 .
[26] C. Dohrmann,et al. A stabilized finite element method for the Stokes problem based on polynomial pressure projections , 2004 .
[27] Chun Liu,et al. Simulations of singularity dynamics in liquid crystal flows: A C0 finite element approach , 2006, J. Comput. Phys..
[28] Hui Zhang,et al. An energy law preserving C0 finite element scheme for simulating the kinematic effects in liquid crystal dynamics , 2007, J. Comput. Phys..
[29] Jie Shen. On error estimates of projection methods for Navier-Stokes equations: first-order schemes , 1992 .
[30] F. Lin,et al. Nonparabolic dissipative systems modeling the flow of liquid crystals , 1995 .
[31] R. Temam,et al. Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .
[32] J. Ericksen. Continuum theory of nematic liquid crystals , 1987 .
[33] A. Chorin. Numerical Solution of the Navier-Stokes Equations* , 1989 .