Scanning tunnelling microscopy imaging of symmetry-breaking structural distortion in the bismuth-based cuprate superconductors.

[1]  J. Hoffman Spectroscopic scanning tunneling microscopy insights into Fe-based superconductors , 2011, 1201.1380.

[2]  J. Orenstein,et al.  Point group sensitive probes of the pseudogap electronic structure in Bi2212 , 2011 .

[3]  J. Orenstein,et al.  From a Single-Band Metal to a High-Temperature Superconductor via Two Thermal Phase Transitions , 2011, Science.

[4]  A. Damascelli,et al.  Structural origin of apparent Fermi surface pockets in angle-resolved photoemission of Bi₂Sr(2-x)La(x)CuO(6+δ). , 2010, Physical review letters.

[5]  G. Gu,et al.  Fluctuating stripes at the onset of the pseudogap in the high-Tc superconductor Bi2Sr2CaCu2O8+x , 2010, Nature.

[6]  J. Sethna,et al.  Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states , 2010, Nature.

[7]  P. Phillips Colloquium: Identifying the propagating charge modes in doped Mott insulators , 2010, 1001.5270.

[8]  Z. Hussain,et al.  Particle-Hole Symmetry Breaking in the Pseudogap State of Bi2201 , 2009, 0911.0197.

[9]  S. A. Grigera,et al.  Heavy d-electron quasiparticle interference and real-space electronic structure of Sr3Ru2O7 , 2009, 0911.2913.

[10]  T. Kondo,et al.  Competition between the pseudogap and superconductivity in the high-Tc copper oxides , 2009, Nature.

[11]  T. Kondo,et al.  Imaging nanoscale Fermi-surface variations in an inhomogeneous superconductor , 2008, 0811.1585.

[12]  T. Kondo,et al.  Charge-density-wave origin of cuprate checkerboard visualized by scanning tunnelling microscopy , 2008, 0806.0203.

[13]  P. Hirschfeld,et al.  Imaging the impact on cuprate superconductivity of varying the interatomic distances within individual crystal unit cells , 2008, Proceedings of the National Academy of Sciences of the United States of America.

[14]  T. Kondo,et al.  Imaging the two gaps of the high-temperature superconductor Bi 2 Sr 2 CuO 6+ x , 2007, 0705.1731.

[15]  Dung-Hai Lee,et al.  Checkerboard charge density wave and pseudogap of high- T c cuprate , 2006, cond-mat/0606392.

[16]  M. Lindroos,et al.  Experimental proof of a structural origin for the shadow fermi surface of Bi2Sr2CaCu2O8+delta. , 2006, Physical review letters.

[17]  H. Eisaki,et al.  Coincidence of checkerboard charge order and antinodal state decoherence in strongly underdoped superconducting Bi2Sr2CaCu2O8 + delta). , 2005, Physical review letters.

[18]  G. Kotliar,et al.  Pseudogap induced by short-range spin correlations in a doped Mott insulator , 2005, cond-mat/0502565.

[19]  R. Gladyshevskii,et al.  Structural origin of the low superconducting anisotropy of Bi 1.7 Pb 0.4 Sr 2 Ca 0.9 Cu 2 O 8 crystals , 2004 .

[20]  A. Yazdani,et al.  Local Ordering in the Pseudogap State of the High-Tc Superconductor Bi2Sr2CaCu2O8+δ , 2004, Science.

[21]  H. Eisaki,et al.  Coexistence of periodic modulation of quasiparticle states and superconductivity in Bi2Sr2CaCu2O8+δ , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  C. Varma,et al.  Spontaneous breaking of time-reversal symmetry in the pseudogap state of a high-Tc superconductor , 2002, Nature.

[23]  Berkeley,et al.  A Four Unit Cell Periodic Pattern of Quasi-Particle States Surrounding Vortex Cores in Bi2Sr2CaCu2O8+δ , 2002, Science.

[24]  R. Laughlin,et al.  Hidden order in the cuprates , 2000, cond-mat/0005443.

[25]  T. Timusk,et al.  The pseudogap in high-temperature superconductors: an experimental survey , 1999, cond-mat/9905219.

[26]  S. Yoshikado,et al.  Detailed structure of a Pb-doped Bi 2 Sr 2 CuO 6 superconductor , 1998 .

[27]  V. J. Emery,et al.  Electronic liquid-crystal phases of a doped Mott insulator , 1997, Nature.

[28]  C. Varma Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals , 1996, cond-mat/9607105.

[29]  J. Hejtmánek,et al.  Structural modulation, oxygen content and transport properties in Bi2.13Sr1.87CuO6+y and Bi2.05Sr1.54La0.41CuO6+y superconductors , 1994 .

[30]  A. Migliori,et al.  Structural modulation and superconducting properties in (Bi, Pb) 2Sr2 (Y, Ca) Cu2Oz , 1992 .

[31]  R. Buckley,et al.  General trends in oxygen stoichiometry effects on Tc in Bi and Tl superconductors , 1991 .

[32]  Lee,et al.  X-ray analysis of the incommensurate modulation in the 2:2:1:2 Bi-Sr-Ca-Cu-O superconductor including the oxygen atoms. , 1990, Physical review. B, Condensed matter.

[33]  O. Gunnarsson,et al.  Charged magnetic domain lines and the magnetism of high-Tc oxides. , 1989, Physical review. B, Condensed matter.

[34]  Zhongxian Zhao,et al.  Direct observation of antiphase domains in Bi2Sr2CaCu2O8 by transmission electron microscopy , 1989 .

[35]  P Coppens,et al.  The Incommensurate Modulation of the 2212 Bi-Sr-Ca-Cu-O Superconductor , 1988, Science.

[36]  Morrissey,et al.  Structures of the superconducting oxides Tl2Ba2CuO6 and Bi2Sr2CuO6. , 1988, Physical review. B, Condensed matter.

[37]  C. Torardi,et al.  A New High-Temperature Superconductor: Bi2Sr3-x Cax Cu2O8+y , 1988, Science.

[38]  T. Williams Nanoscale Electronic Structure of Cuprate Superconductors Investigated with Scanning Tunneling Spectroscopy , 2011 .

[39]  A. Karki,et al.  Nanoscale chemical phase separation in FeTe0.55Se0.45 as seen via scanning tunneling spectroscopy , 2011 .

[40]  G. McIntyre,et al.  Refinement of the incommensurate structure of high quality Bi-2212 single crystals from a neutron diffraction study , 1998 .