Nonlinear Identifiability Analysis of the Porous Electrode Theory Model of Lithium-Ion Batteries

Porous electrode theory (PET) is widely used to model battery cycling behavior by describing electrochemical kinetics and transport in solid particles and electrolyte, and modeling thermodynamics by fitting an open-circuit potential. The PET model consists of tightly coupled nonlinear partial differential-algebraic equations in which effective kinetic and transport parameters are fit to battery cycling data, and then the model is used to analyze the effects of variations in design parameters or operating conditions such as charging protocols. In a detailed nonlinear identifiability analysis, we show that most of the effective model parameters in porous electrode theory are not practically identifiable from cycling data for a lithium-ion battery. The only identifiable parameter that can be identified from C/10 discharge data is the effective solid diffusion coefficient, indicating that this battery is in the diffusion-limited regime at this discharge rate. A resistance in series correlation was shown for the practically unidentifiable parameters by mapping out the confidence region. Alternative experiments in addition to discharge cycles are required in order to uniquely determine the full set of parameters. © 2021 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BYNC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: permissions@ioppublishing.org. [DOI: 10.1149/1945-7111/ac26b1]

[1]  Dl Dmitry Danilov,et al.  Parameter estimation of an electrochemistry‐based lithium‐ion battery model using a two‐step procedure and a parameter sensitivity analysis , 2018 .

[2]  V. Subramanian,et al.  Data Science Approaches for Electrochemical Engineers: An Introduction through Surrogate Model Development for Lithium-Ion Batteries , 2018 .

[3]  Andreas Hackl,et al.  Li-ion battery model performance for automotive drive cycles with current pulse and EIS parameterization , 2017, 2017 IEEE Transportation Electrification Conference and Expo (ITEC).

[4]  M. Bazant,et al.  Multiphase Porous Electrode Theory , 2017, 1702.08432.

[5]  Victor M. Zavala,et al.  A Computational Framework for Identifiability and Ill-Conditioning Analysis of Lithium-Ion Battery Models , 2016 .

[6]  M. Lacroix,et al.  An Inverse Method for Estimating the Electrochemical Parameters of Lithium-Ion Batteries I. Methodology , 2016 .

[7]  R. B. Gopaluni,et al.  LIONSIMBA: A Matlab Framework Based on a Finite Volume Model Suitable for Li-Ion Battery Design, Simulation, and Control , 2016 .

[8]  Alexander Michaelis,et al.  Determination of state of charge-dependent asymmetric Butler–Volmer kinetics for LixCoO2 electrode using GITT measurements , 2015 .

[9]  Shengbo Eben Li,et al.  Simplification of pseudo two dimensional battery model using dynamic profile of lithium concentration , 2015 .

[10]  Kurt Maute,et al.  On Uncertainty Quantification of Lithium-ion Batteries: Application to an LiC$_6$/LiCoO$_2$ cell , 2015, 1505.07776.

[11]  Sang-Hoon Cha,et al.  Capacity fade modeling of a Lithium-ion battery for electric vehicles , 2015 .

[12]  David A. Howey,et al.  Model identification and parameter estimation for LiFePO 4 batteries , 2013 .

[13]  Hosam K. Fathy,et al.  Genetic identification and fisher identifiability analysis of the Doyle–Fuller–Newman model from experimental cycling of a LiFePO4 cell , 2012 .

[14]  Richard D. Braatz,et al.  Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models , 2011 .

[15]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[16]  Yoyo Hinuma,et al.  Thermodynamic and kinetic properties of the Li-graphite system from first-principles calculations , 2010 .

[17]  C. M. Doyle Design and simulation of lithium rechargeable batteries , 2010 .

[18]  Weifeng Fang,et al.  Electrochemical–thermal modeling of automotive Li‐ion batteries and experimental validation using a three‐electrode cell , 2010 .

[19]  Ursula Klingmüller,et al.  Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood , 2009, Bioinform..

[20]  Richard D. Braatz,et al.  Effect of Additives on Shape Evolution during Electrodeposition II. Parameter Estimation from Roughness Evolution Experiments , 2007 .

[21]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[22]  Hui Xia,et al.  Li diffusion in LiCoO2 thin films prepared by pulsed laser deposition , 2006 .

[23]  A. Saltelli,et al.  Sensitivity analysis for chemical models. , 2005, Chemical reviews.

[24]  Lars Ole Valøen,et al.  Transport Properties of LiPF6-Based Li-Ion Battery Electrolytes , 2005 .

[25]  Richard D. Braatz,et al.  Perspectives on the design and control of multiscale systems , 2004 .

[26]  R. Braatz,et al.  Maximum A posteriori estimation of transient enhanced diffusion energetics , 2003 .

[27]  D. L. Ma,et al.  IDENTIFICATION OF KINETIC PARAMETERS IN MULTIDIMENSIONAL CRYSTALLIZATION PROCESSES , 2002 .

[28]  Chaoyang Wang,et al.  Thermal‐Electrochemical Modeling of Battery Systems , 2000 .

[29]  G. Fey,et al.  Kinetic Characterization of the Electrochemical Intercalation of Lithium Ions into Graphite Electrodes , 2000 .

[30]  Sigrún Andradóttir,et al.  A review of simulation optimization techniques , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[31]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[32]  Mark A. Kramer,et al.  Sensitivity analysis of systems of differential and algebraic equations , 1985 .

[33]  James V. Beck,et al.  Parameter Estimation in Engineering and Science , 1977 .

[34]  J. Newman,et al.  Porous‐electrode theory with battery applications , 1975 .

[35]  I. B. Goldberg,et al.  Simultaneous electrochemical-electron spin resonance measurements. II. Kinetic measurments using constant current pulse , 1974 .

[36]  N. Metropolis,et al.  The Monte Carlo method. , 1949, Journal of the American Statistical Association.