Ultrasensitive multiplex optical quantification of bacteria in large samples of biofluids

[1]  Valerio Pruneri,et al.  Mid-infrared plasmonic biosensing with graphene , 2015, Science.

[2]  Bin Sun,et al.  Simultaneous capture, detection, and inactivation of bacteria as enabled by a surface-enhanced Raman scattering multifunctional chip. , 2015, Angewandte Chemie.

[3]  M. Perros A sustainable model for antibiotics , 2015, Science.

[4]  R. Álvarez-Puebla,et al.  Universal One-Pot and Scalable Synthesis of SERS Encoded Nanoparticles , 2015 .

[5]  Deqing Zhang,et al.  Identification of bacteria in water by a fluorescent array. , 2014, Angewandte Chemie.

[6]  Susan S. Huang,et al.  Rapid detection of single bacteria in unprocessed blood using Integrated Comprehensive Droplet Digital Detection , 2014, Nature Communications.

[7]  Chen-Han Huang,et al.  On-line SERS detection of single bacterium using novel SERS nanoprobes and a microfluidic dielectrophoresis device. , 2014, Small.

[8]  Felix J. H. Hol,et al.  Zooming in to see the bigger picture: Microfluidic and nanofabrication tools to study bacteria , 2014, Science.

[9]  Molly M. Stevens,et al.  Colloidal nanoparticles as advanced biological sensors , 2014, Science.

[10]  W. Bishai,et al.  Rapid in vivo detection of isoniazid-sensitive Mycobacterium tuberculosis by breath test , 2014, Nature Communications.

[11]  Christian Drosten,et al.  Rapid point of care diagnostic tests for viral and bacterial respiratory tract infections—needs, advances, and future prospects , 2014, The Lancet Infectious Diseases.

[12]  D. Fernig,et al.  A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. , 2014, The Analyst.

[13]  J. Lis,et al.  New Technologies Provide Quantum Changes in the Scale, Speed, and Success of SELEX Methods and Aptamer Characterization , 2014, Molecular therapy. Nucleic acids.

[14]  S. Schlücker Surface-enhanced Raman spectroscopy: concepts and chemical applications. , 2014, Angewandte Chemie.

[15]  Rebecca Kanthor Diagnostics: Detection drives defence , 2014, Nature.

[16]  X. Tao,et al.  Synthesis of monodisperse, quasi-spherical silver nanoparticles with sizes defined by the nature of silver precursors. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[17]  Duncan Graham,et al.  Simultaneous detection and quantification of three bacterial meningitis pathogens by SERS , 2014 .

[18]  T. van der Poll,et al.  Severe sepsis and septic shock. , 2013, The New England journal of medicine.

[19]  C. Hu,et al.  Rapid (<5 min) Identification of Pathogen in Human Blood by Electrokinetic Concentration and Surface-Enhanced Raman Spectroscopy , 2013, Scientific Reports.

[20]  Philippe Colson,et al.  Modern clinical microbiology: new challenges and solutions , 2013, Nature Reviews Microbiology.

[21]  Wolfgang J Parak,et al.  Multiplexed sensing and imaging with colloidal nano- and microparticles. , 2013, Annual review of analytical chemistry.

[22]  X. Tao,et al.  Simple synthesis of monodisperse, quasi-spherical, citrate-stabilized silver nanocrystals in water. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[23]  Bing Yan,et al.  SERS tags: novel optical nanoprobes for bioanalysis. , 2013, Chemical reviews.

[24]  C. Sprung,et al.  Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock 2012 , 2013, Critical care medicine.

[25]  Luis M Liz-Marzán,et al.  Organized Plasmonic Clusters with High Coordination Number and Extraordinary Enhancement in Surface-Enhanced Raman Scattering (SERS) , 2012, Angewandte Chemie.

[26]  Hedi Mattoussi,et al.  The state of nanoparticle-based nanoscience and biotechnology: progress, promises, and challenges. , 2012, ACS nano.

[27]  Chih-kuan Tung,et al.  Acceleration of Emergence of Bacterial Antibiotic Resistance in Connected Microenvironments , 2011, Science.

[28]  Xin Xu,et al.  Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy , 2011, Nature communications.

[29]  Xiang Zhang,et al.  Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging , 2011, Nature.

[30]  G. Rubenfeld,et al.  Critical care and the global burden of critical illness in adults , 2010, The Lancet.

[31]  Anupam Singhal,et al.  Microfluidic measurement of antibody-antigen binding kinetics from low-abundance samples and single cells. , 2010, Analytical chemistry.

[32]  Sanjiv S. Gambhir,et al.  Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy , 2009, Proceedings of the National Academy of Sciences.

[33]  Emanuel Goldman,et al.  Practical Handbook of Microbiology, Second Edition , 2008 .

[34]  M. Levy,et al.  Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008 , 2007, Intensive Care Medicine.

[35]  Martin Moskovits,et al.  Free-surface microfluidic control of surface-enhanced Raman spectroscopy for the optimized detection of airborne molecules , 2007, Proceedings of the National Academy of Sciences.

[36]  Stephen R. Quake,et al.  Microfluidic Digital PCR Enables Multigene Analysis of Individual Environmental Bacteria , 2006, Science.

[37]  Fredrik Svedberg,et al.  Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation. , 2006, Nano letters.

[38]  K. Wood,et al.  Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock* , 2006, Critical care medicine.

[39]  T. Maier,et al.  Fast and reliable MALDI-TOF MS–based microorganism identification , 2006 .

[40]  M. Bissell Optimal Testing Parameters for Blood Cultures , 2006 .

[41]  F. G. D. Abajo,et al.  Retarded field calculation of electron energy loss in inhomogeneous dielectrics , 2002 .

[42]  I. Tomlinson,et al.  Antibody arrays for high-throughput screening of antibody–antigen interactions , 2000, Nature Biotechnology.

[43]  F. G. D. Abajo,et al.  MULTIPLE SCATTERING OF RADIATION IN CLUSTERS OF DIELECTRICS , 1999 .

[44]  James W. Evans,et al.  Random and cooperative sequential adsorption , 1993 .

[45]  R. D. Diehl,et al.  Surface Science: An Introduction , 1991 .

[46]  Emanuel Goldman,et al.  Practical Handbook of Microbiology , 1989 .

[47]  A. Balows,et al.  Laboratory Diagnosis of Infectious Diseases , 1988, Springer New York.

[48]  D. Meisel,et al.  Adsorption and surface-enhanced Raman of dyes on silver and gold sols , 1982 .

[49]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .