Observation of topologically protected bound states in photonic quantum walks

[1]  Liang Jiang,et al.  Majorana fermions in equilibrium and in driven cold-atom quantum wires. , 2011, Physical review letters.

[2]  Dong Qian,et al.  Observation of topological order in a superconducting doped topological insulator , 2010, 1104.3881.

[3]  Takuya Kitagawa,et al.  Topological Characterization of Periodically-Driven Quantum Systems , 2010, 1010.6126.

[4]  Michael Mc Gettrick,et al.  Mimicking the probability distribution of a two-dimensional Grover walk with a single-qubit coin. , 2010, Physical review letters.

[5]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[6]  Gil Refael,et al.  Floquet topological insulator in semiconductor quantum wells , 2010, 1008.1792.

[7]  G. Refael,et al.  Non-Abelian statistics and topological quantum information processing in 1D wire networks , 2010, 1006.4395.

[8]  Z. K. Liu,et al.  Experimental Realization of a Three-Dimensional Topological Insulator , 2010 .

[9]  Takuya Kitagawa,et al.  Exploring topological phases with quantum walks , 2010, 1003.1729.

[10]  A Aspuru-Guzik,et al.  Discrete single-photon quantum walks with tunable decoherence. , 2010, Physical review letters.

[11]  W. Siemons Experimental Realization of a Three-Dimensional Topological Insulator, Bi 2Te3 , 2010 .

[12]  Shinsei Ryu,et al.  Topological insulators and superconductors: tenfold way and dimensional hierarchy , 2009, 0912.2157.

[13]  R. Blatt,et al.  Realization of a quantum walk with one and two trapped ions. , 2009, Physical review letters.

[14]  A Schreiber,et al.  Photons walking the line: a quantum walk with adjustable coin operations. , 2009, Physical review letters.

[15]  Zheng Wang,et al.  Observation of unidirectional backscattering-immune topological electromagnetic states , 2009, Nature.

[16]  Haijun Zhang,et al.  Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3 , 2009, Science.

[17]  Dieter Meschede,et al.  Quantum Walk in Position Space with Single Optically Trapped Atoms , 2009, Science.

[18]  R. Cava,et al.  Observation of a large-gap topological-insulator class with a single Dirac cone on the surface , 2009 .

[19]  J Glueckert,et al.  Quantum walk of a trapped ion in phase space. , 2009, Physical review letters.

[20]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[21]  L. Fu,et al.  Superconducting proximity effect and majorana fermions at the surface of a topological insulator. , 2007, Physical review letters.

[22]  M. Lewenstein,et al.  Cold atoms in non-Abelian gauge potentials: from the Hofstadter "moth" to lattice gauge theory. , 2005, Physical review letters.

[23]  M. Lukin,et al.  Fractional quantum Hall states of atoms in optical lattices. , 2004, Physical review letters.

[24]  P. Zoller,et al.  Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms , 2003, quant-ph/0304038.

[25]  Shinsei Ryu,et al.  Topological origin of zero-energy edge states in particle-hole symmetric systems. , 2001, Physical review letters.

[26]  A. Kitaev,et al.  Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[27]  Aharonov,et al.  Quantum random walks. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[28]  J. Schrieffer,et al.  Solitons with Fermion Number 1/2 in Condensed Matter and Relativistic Field Theories , 1981 .

[29]  G. Dorda,et al.  New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance , 1980 .

[30]  Claudio Rebbi,et al.  Solitons with Fermion Number 1/2 , 1976 .

[31]  L. Duan,et al.  Work supported in part by US Department of Energy contract DE-AC02-76SF00515. Spin Hall effects for cold atoms in a light induced gauge potential , 2008 .

[32]  S. Roth,et al.  Solitons in polyacetylene , 1987 .