Implementation of Lévy CARMA model in Yuima package

The paper shows how to use the R package yuima available on CRAN for the simulation and the estimation of a general Lévy Continuous Autoregressive Moving Average (CARMA) model. The flexibility of the package is due to the fact that the user is allowed to choose several parametric Lévy distribution for the increments. Some numerical examples are given in order to explain the main classes and the corresponding methods implemented in yuima package for the CARMA model.

[1]  John Hinde,et al.  Compound Poisson Regression Models , 1982 .

[2]  H. Tómasson,et al.  Some computational aspects of Gaussian CARMA modelling , 2013, Statistics and Computing.

[3]  R. Fontana,et al.  Minimum-Size Mixed-Level Orthogonal Fractional Factorial Designs Generation: A SAS-Based Algorithm , 2013 .

[4]  Zhu Wang cts: An R Package for Continuous Time Autoregressive Models via Kalman Filter , 2013 .

[5]  N. Yoshida Estimation for diffusion processes from discrete observation , 1992 .

[6]  G. Tunnicliffe Wilson,et al.  Parameterization of continuous time autoregressive models for irregularly sampled time series data , 1994 .

[7]  N. Shephard,et al.  Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .

[8]  Peter J. Brockwell,et al.  Lévy-Driven Carma Processes , 2001 .

[9]  Hideitsu Hino,et al.  The YUIMA Project: A Computational Framework for Simulation and Inference of Stochastic Differential Equations , 2014 .

[10]  D. Karlis An EM type algorithm for maximum likelihood estimation of the normal-inverse Gaussian distribution , 2002 .

[11]  M. Kendall,et al.  The Advanced Theory of Statistics, Vol. 1: Distribution Theory , 1959 .

[12]  Jaromir Antoch,et al.  COMPSTAT 2004 — Proceedings in Computational Statistics , 2004 .

[13]  Lorenzo Mercuri,et al.  Approximation of the Variance Gamma Model with a Finite Mixture of Normals (Preprint version) , 2011 .

[14]  Viktor Todorov,et al.  Econometric analysis of jump-driven stochastic volatility models , 2011 .

[15]  K. Chan,et al.  A NOTE ON THE COVARIANCE STRUCTURE OF A CONTINUOUS-TIME ARMA PROCESS , 2000 .

[16]  Continuous-time GARCH processes , 2006, math/0607109.

[17]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[18]  Douglas M. Bates,et al.  Programming With Data: A Guide to the S Language , 1999, Technometrics.

[19]  佐藤 健一 Lévy processes and infinitely divisible distributions , 2013 .

[20]  Peter J. Brockwell,et al.  Parametric estimation of the driving Lévy process of multivariate CARMA processes from discrete observations , 2012, J. Multivar. Anal..

[21]  Stefano M. Iacus,et al.  Parameter estimation for the discretely observed fractional Ornstein–Uhlenbeck process and the Yuima R package , 2011, Computational Statistics.

[22]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[23]  E. Seneta,et al.  The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .

[24]  O. Barndorff-Nielsen Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[25]  Dinh Tuan Pham,et al.  Levinson-Durbin-type algorithms for continuous-time autoregressive models and applications , 1991, Math. Control. Signals Syst..

[26]  P. Brockwell,et al.  Estimation for Non-Negative Lévy-Driven CARMA Processes , 2011 .

[27]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[28]  Richard A. Davis,et al.  Estimation for Nonnegative Lévy-Driven Ornstein-Uhlenbeck Processes , 2007, Journal of Applied Probability.

[29]  R. Stelzer,et al.  Quasi maximum likelihood estimation for strongly mixing state space models and multivariate L\'evy-driven CARMA processes , 2012, 1210.7447.

[30]  George Tauchen,et al.  Simulation Methods for Lévy-Driven Continuous-Time Autoregressive Moving Average (CARMA) Stochastic Volatility Models , 2006 .

[31]  M. Kendall,et al.  The Advanced Theory of Statistics: Volume 1, Distribution Theory , 1978 .

[32]  Granville Tunnicliffe-Wilson,et al.  Modelling Multiple Time Series: Achieving the Aims , 2004 .

[33]  J. Doob The Elementary Gaussian Processes , 1944 .

[34]  Peter J. Brockwell,et al.  Lévy-driven and fractionally integrated ARMA processes with continuous time parameter , 2005 .

[35]  J. Zakoian,et al.  Estimating linear representations of nonlinear processes , 1998 .