A simple methodology for the evaluation of groundwater pollution risks.

Groundwater represents a very significant source of fresh water for irrigation and drinking purposes and therefore preserving the availability and quality of this resource is extremely important. A first assessment of the amount of pollutants that can be exported to groundwater via soil drainage can be made by a) measuring the amount of contaminants present in the soil solution at the bottom of the soil after a prolonged simulated rainfall event, and b) estimating the amount of drainage water passing the soil bottom during a period of time long enough to include sufficient instances of both, wet and dry episodes inherent to the local climate. Drainage water was estimated by means of a simple infiltration model ("bucket model") which computes on a daily basis the inputs and outputs of soil water through rainfall and evapotranspiration generated by a stochastic model of the local climate along a period of 50-100 years. The methodology was applied in the Guadiamar valley after the toxic spill of a pyrite mine in Aznalcóllar (Spain). The results show that Zn is the dominant contaminant at the site with a 1.2 g m(-2)year(-1) contribution to groundwater. The presence of a gravel rich horizon below 50 cm depth reveals an increase in drainage and the threat to groundwater.