Timing of nitrogen application and cover crops on upland rice economic viability

The objective of this work was to evaluate the economic viability and competitiveness of upland rice (Oryza sativa), compared with flooded rice, in a system with different nitrogen fertilization timing and cover crops in Southeastern Brazil. The treatments consisted of upland rice grown under Urochloa brizantha or Urochloa ruziziensis straw, with the following fertilization: T, 30 kg ha-1 N at rice sowing + no extra N supply (0 kg ha-1); C, 30 kg ha-1 N at rice sowing + 90 kg ha-1 N at rice tillering; A2, 30 kg ha-1 N at rice sowing + 90 kg ha-1 N one day before rice sowing; and A1, 30 kg ha-1 N at rice sowing + 90 kg ha-1 N in the living cover crops. Total operating cost, gross revenue, operating profit, profitability index, and equilibrium price were determined. Upland rice results in a monetary gain for the farmer similar to that of flooded rice when nitrogen is added, regardless of fertilization timing. Under rainfall deficit conditions, upland rice sown on U. brizantha straw shows higher profitability rates than when sown on U. ruziziensis. When there is a possibility of rainfall deficit, U. brizantha, as a cover plant, results in a greater economic security for upland rice producers.

[1]  P. Mazzafera,et al.  Urochloa in Tropical Agroecosystems , 2020, Frontiers in Sustainable Food Systems.

[2]  E. Kuramae,et al.  Microbial N-cycling gene abundance is affected by cover crop specie and development stage in an integrated cropping system , 2020, Archives of Microbiology.

[3]  T. Tadesse,et al.  Review of Rice Response to Fertilizer Rates and Time of Nitrogen Application in Ethiopia , 2019, International Journal of Applied Agricultural Sciences.

[4]  R. A. Rodrigues,et al.  Nitrogen supply associated with the application of trinexapac-ethyl in upland rice irrigated by sprinkler , 2019, Semina: Ciências Agrárias.

[5]  M. Babel,et al.  Climate change impacts on irrigation water requirement, crop water productivity and rice yield in the Songkhram River Basin, Thailand , 2018, Journal of Cleaner Production.

[6]  Márcio Carlos Just,et al.  CONSUMO DE ÁGUA EM LAVOURAS DE ARROZ IRRIGADAS EM SISTEMA COLETIVO , 2018, Tecnologia e Ambiente.

[7]  Candiss O. Williams,et al.  Reevaluating the effects of soil organic matter and other properties on available water-holding capacity using the National Cooperative Soil Survey Characterization Database , 2018, Journal of Soil and Water Conservation.

[8]  P. L. Leal,et al.  Biological attributes of soil cultivated with corn intercropped with Urochloa brizantha in different plant arrangements with and without herbicide application , 2018 .

[9]  Bhagawan Bharali,et al.  Approaches for Enhancing Nitrogen Use Efficiency in some Upland rice (Oryza sativa L.) Genotypes under Water Stress Conditions , 2018 .

[10]  F. Ewert,et al.  Yield variation of rainfed rice as affected by field water availability and N fertilizer use in central Benin , 2018, Nutrient Cycling in Agroecosystems.

[11]  L. F. Stone,et al.  Índices fisiológicos do arroz irrigado afetados pela inundação e fertilização nitrogenada , 2017 .

[12]  A. C. Lanna,et al.  Straw and early nitrogen fertilization affect soil properties and upland rice yield , 2016 .

[13]  R. Román,et al.  CONSUMO DE ÁGUA EM ARROZ IRRIGADO POR INUNDAÇÃO EM SISTEMA DE MULTIPLAS ENTRADAS , 2016 .

[14]  L. F. Stone,et al.  Seed treatment , soil compaction and nitrogen management affect upland rice 1 , 2016 .

[15]  R. A. Rodrigues,et al.  Economic analysis cultivation of upland rice with and without irrigation. , 2015 .

[16]  W. Achouak,et al.  Root exudates mediated interactions belowground , 2014 .

[17]  K. Butterbach‐Bahl,et al.  Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems , 2014, Nutrient Cycling in Agroecosystems.

[18]  S. Buzetti,et al.  DOSES, FONTES E ÉPOCAS DE APLICAÇÃO DE NITROGÊNIO EM ARROZ DE TERRAS ALTAS CULTIVADO EM SISTEMA DE SEMEADURA DIRETA , 2013 .

[19]  Carlos Eduardo Pellegrino Cerri,et al.  Nitrous oxide emissions in agricultural soils: a review , 2013 .

[20]  S. Dondeyne,et al.  World Reference Base for Soil Resources , 2013 .

[21]  O. J. Sabbag,et al.  Aspectos econômicos da produção de bovinos de corte , 2012 .

[22]  L. A. Z. Machado,et al.  Produção de palha e forragem por espécies anuais e perenes em sucessão à soja , 2010 .

[23]  P. Brookes,et al.  Phosphorus solubilization and potential transfer to surface waters from the soil microbial biomass following drying-rewetting and freezing-thawing. , 2010 .

[24]  L. F. Stone,et al.  EFEITO DA DEFICIÊNCIA HÍDRICA NO DESENVOLVIMENTO E RENDIMENTO DE QUATRO CULTIVARES DE ARROZ DE TERRAS ALTAS , 2009 .

[25]  C. Crusciol,et al.  Marcha de absorção de nitrogênio de cultivares de arroz de terras altas com diferentes tipos de plantas , 2006 .

[26]  L. H. C. Anjos,et al.  Sistema Brasileiro de Classificação de Solos. , 2006 .

[27]  R. Serra,et al.  Sistema integrado de custos agropecuarios - CUSTAGRI , 1998 .

[28]  José Tiacci Kirsten Índice Nacional de Preços ao Consumidor , 1980 .