Bifacial Cu(In,Ga)Se2 solar cells using hydrogen‐doped In2O3 films as a transparent back contact

Hydrogen‐doped In2O3 (IOH) films are used as a transparent back contact in bifacial Cu(In,Ga)Se2 (CIGS) solar cells. The effect of the IOH thickness and the impact of the sodium incorporation technique on the photovoltaic parameters are studied, and clear correlations are observed. It is shown that a loss in short circuit current density (JSC) is the major limitation at back side illumination. The introduction of a thin Al2O3 layer on top of the IOH significantly increases the collection efficiency (ϕ(x)) for electrons generated close to the back contact. In this way, the JSC loss can be mitigated to only ~ 25% as compared with front side illumination. The Al2O3 film potentially reduces the interface defect density or, alternatively, creates a field effect passivation. In addition, it prevents the excessive formation of Ga2O3 at the CIGS/IOH interface, which is found otherwise when a NaF layer is added before absorber deposition. Consequently, detrimental redistributions in Ga and In close to the back contact can be avoided. Finally, a bifacial CIGS solar cell with an efficiency (η) of η = 11.0% at front and η = 6.0% at back side illumination could be processed. The large potential for further improvements is discussed.

[1]  R. Scheer,et al.  Optical and electrical characterization of Cu(In,Ga)Se2 thin film solar cells with varied absorber layer thickness , 2015 .

[2]  Jonathan Joel,et al.  Rear surface optimization of CZTS solar cells by use of a passivation layer with nano-sized point openings , 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC).

[3]  Denis Flandre,et al.  Highly reflective rear surface passivation design for ultra-thin Cu(In,Ga)Se2 solar cells , 2015 .

[4]  T. Törndahl,et al.  Using hydrogen‐doped In2O3 films as a transparent back contact in (Ag,Cu)(In,Ga)Se2 solar cells , 2018 .

[5]  Marc Burgelman,et al.  Modeling polycrystalline semiconductor solar cells , 2000 .

[6]  I. P. Batra Electronic structure of a-Al2O3 , 1982 .

[7]  Carrier collection in Cu(In,Ga)Se2 solar cells with graded band gaps and transparent ZnO:Al back contacts , 2007 .

[8]  Marika Edoff,et al.  Development of rear surface passivated Cu(In,Ga)Se2 thin film solar cells with nano-sized local rear point contacts , 2013 .

[9]  J. Hüpkes,et al.  Novel etch process to tune crater size on magnetron sputtered ZnO:Al , 2011 .

[10]  R. Klenk,et al.  The Importance of Sodium Control in CIGSe Superstrate Solar Cells , 2015, IEEE Journal of Photovoltaics.

[11]  Nina Shariati Nilsson,et al.  Record 1.0 V open‐circuit voltage in wide band gap chalcopyrite solar cells , 2017 .

[12]  A. Zunger,et al.  Effects of Na on the electrical and structural properties of CuInSe2 , 1999 .

[13]  L. Stolt,et al.  Atomic layer deposition of In2O3 transparent conductive oxide layers for application in Cu(In,Ga)Se2 solar cells with different buffer layers , 2016 .

[14]  D. Flandre,et al.  Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells , 2014, Progress in photovoltaics.

[15]  T. Unold,et al.  Oxygen deficiency and Sn doping of amorphous Ga2O3 , 2016 .

[16]  G. Lucovsky A chemical bonding model for the native oxides of the III–V compound semiconductors , 1981 .

[17]  M. Calicchio,et al.  Bifacial CIGS solar cells grown by Low Temperature Pulsed Electron Deposition , 2017 .

[18]  M. Green Do built‐in fields improve solar cell performance? , 2009 .

[19]  H. Zogg,et al.  Ga2O3 segregation in Cu(In, Ga)Se2/ZnO superstrate solar cells and its impact on their photovoltaic properties , 2002 .

[20]  H. Fujiwara,et al.  Correlation between oxygen stoichiometry, structure, and opto-electrical properties in amorphous In2O3:H films , 2012 .

[21]  C. Kaufmann,et al.  Bifacial Cu(In,Ga)Se2 solar cells with submicron absorber thickness: back-contact passivation and light management , 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC).

[22]  Uli Lemmer,et al.  Optoelectrical improvement of ultra‐thin Cu(In,Ga)Se2 solar cells through microstructured MgF2 and Al2O3 back contact passivation layer , 2016 .

[23]  E. Gombia,et al.  Low temperature deposition of bifacial CIGS solar cells on Al-doped Zinc Oxide back contacts , 2017 .

[24]  W. Shafarman,et al.  Optical characterization of CuIn1−xGaxSe2 alloy thin films by spectroscopic ellipsometry , 2003 .

[25]  John Robertson,et al.  Behavior of hydrogen in high dielectric constant oxide gate insulators , 2003 .

[26]  Peiming Wang,et al.  A database and retrieval system for the NBS tables of chemical thermodynamic properties , 1989, J. Chem. Inf. Comput. Sci..

[27]  A. Zunger New insights on chalcopyrites from solid-state theory , 2007 .

[28]  F. La Mattina,et al.  Surface Passivation for Reliable Measurement of Bulk Electronic Properties of Heterojunction Devices. , 2016, Small.

[29]  T. Nakada,et al.  Novel device structure for Cu(In,Ga)Se2 thin film solar cells using transparent conducting oxide back and front contacts , 2004 .

[30]  Thomas Unold,et al.  Cu(In,Ga)Se2 superstrate solar cells: prospects and limitations , 2015 .

[31]  F. Mollica Optimization of ultra-thin Cu(In,Ga)Se2 based solar cells with alternative back-contacts , 2016 .

[32]  R. S. Johnson,et al.  Physical and electrical properties of noncrystalline Al2O3 prepared by remote plasma enhanced chemical vapor deposition , 2001 .

[33]  Anderson Janotti,et al.  Native defects in Al2O3 and their impact on III-V/Al2O3 metal-oxide-semiconductor-based devices , 2011 .

[34]  L. Stolt,et al.  On the beneficial effect of Al2O3 front contact passivation in Cu(In,Ga)Se2 solar cells , 2017 .

[35]  Marika Edoff,et al.  Improved Rear Surface Passivation of Cu(In,Ga)Se$_{\bf 2}$ Solar Cells: A Combination of an Al$_{\bf 2}$O $_{\bf 3}$ Rear Surface Passivation Layer and Nanosized Local Rear Point Contacts , 2014, IEEE Journal of Photovoltaics.

[36]  T. Nakada,et al.  Microstructural and diffusion properties of CIGS thin film solar cells fabricated using transparent conducting oxide back contacts , 2005 .

[37]  L. Stolt,et al.  Direct comparison of atomic layer deposition and sputtering of In2O3:H used as transparent conductive oxide layer in CuIn1-xGaxSe2 thin film solar cells , 2016 .

[38]  H. Sugimoto,et al.  New World-Record Efficiency for Pure-Sulfide Cu(In,Ga)S2 Thin-Film Solar Cell With Cd-Free Buffer Layer via KCN-Free Process , 2016, IEEE Journal of Photovoltaics.

[39]  M. Jubault,et al.  Light absorption enhancement in ultra-thin Cu(In,Ga)Se2 solar cells by substituting the back-contact with a transparent conducting oxide based reflector , 2017 .

[40]  Chih-Wen Liu,et al.  Surface passivation of Cu(In,Ga)Se2 using atomic layer deposited Al2O3 , 2012 .