Additional Distributional Records of Ambystoma Laterale, A. Jeffersonianum (Amphibia: Caudata) and Their Unisexual Kleptogens in Northeastern North America

Abstract Like ants, termites are entirely eusocial and have profound ecological significance in the tropics. Following upon recent studies reporting more than a quarter of all known fossil termites, we present the first phylogeny of termite lineages using exemplar Cretaceous, Tertiary, and Recent taxa. Relationships among Recent families were largely unaffected by the addition of extinct taxa, but the analysis revealed extensive grades of stem-group taxa and the divergence of some modern families in the Cretaceous. Rhinotermitidae, Serritermitidae, and the “higher” termites (family Termitidae), which comprise 84% of the world termite species, diverged and radiated entirely in the Tertiary, corresponding to a significant increase in termite individuals in the fossil record. Radiation of the higher termites may have affected the formation of terrestrial carbon reserves like oil and coal. The higher classification of Isoptera is slightly revised based on the phylogenetic results. The following new taxa are proposed: Cratomastotermitidae, new family; Euisoptera, new clade; Archotermopsidae, new family; and Neoisoptera, new clade. In addition, the families Stolotermitidae, Stylotermitidae, and Archeorhinotermitidae are newly recognized or resurrected, and the families Termopsidae and Hodotermitidae are significantly restricted in composition.

[1]  Ļ. Cleveland,et al.  The Wood-Feeding Roach Cryptocercus, Its Protozoa, And The Symbiosis Between Protozoa And Roach , 2011 .

[2]  D. Grimaldi,et al.  Diverse Rhinotermitidae and Termitidae (Isoptera) in Dominican Amber , 2009 .

[3]  M. Engel,et al.  A giant termite from the Late Miocene of Styria, Austria (Isoptera) , 2009, Naturwissenschaften.

[4]  D. Grimaldi,et al.  The Species of Isoptera (Insecta) from The Early Cretaceous Crato Formation: A Revision , 2008 .

[5]  M. Whiting,et al.  The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: Implications for the evolution of the worker and pseudergate castes, and foraging behaviors. , 2008, Molecular phylogenetics and evolution.

[6]  M. Engel Two New Termites in Baltic Amber (Isoptera) , 2008 .

[7]  T. Hunt,et al.  A Comprehensive Phylogeny of Beetles Reveals the Evolutionary Origins of a Superradiation , 2007, Science.

[8]  M. Engel,et al.  New Dolichorhinotermes from Ecuador and in Mexican Amber (Isoptera: Rhinotermitidae) , 2007 .

[9]  T. Miura,et al.  Save Isoptera: A comment on Inward et al. , 2007, Biology Letters.

[10]  A. Vogler,et al.  A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. , 2007, Molecular phylogenetics and evolution.

[11]  P. Eggleton,et al.  Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches , 2007, Biology Letters.

[12]  A. Nel,et al.  A reassessment of the Cretaceous amber deposits from France and their palaeontological significance , 2007 .

[13]  A. Rasnitsyn,et al.  A comparative analysis of the Baltic and Rovno amber arthropod faunas: representative samples , 2007 .

[14]  M. Engel,et al.  TWO OVERLOOKED FAMILY-GROUP NAMES FOR FOSSIL TERMITES (ISOPTERA: MASTOTERMITIDAE) , 2007 .

[15]  M. Oh,et al.  DieFossilgeschichtederBienenundihrernächsten Verwandten(Hymenoptera:Apoidea) , 2007 .

[16]  M. Engel,et al.  Drywood termites in Dominican amber (Isoptera: Kalotermitidae) , 2007 .

[17]  Brian L. Fisher,et al.  Evaluating alternative hypotheses for the early evolution and diversification of ants , 2006, Proceedings of the National Academy of Sciences.

[18]  Seán G. Brady,et al.  The history of early bee diversification based on five genes plus morphology , 2006, Proceedings of the National Academy of Sciences.

[19]  P. Duringer,et al.  The first fossil fungus gardens of Isoptera: oldest evidence of symbiotic termite fungiculture (Miocene, Chad basin) , 2006, Naturwissenschaften.

[20]  Paul M. Choate,et al.  Evolution of the Insects , 2006 .

[21]  C. Moreau,et al.  Phylogeny of the Ants: Diversification in the Age of Angiosperms , 2006, Science.

[22]  A. Nel,et al.  Termite of the Early Eocene amber of France (Isoptera: Mastotermitidae, Kalotermitidae) , 2006 .

[23]  M. Engel,et al.  A NEW RECORD OF MASTOTERMES FROM THE EOCENE OF GERMANY (ISOPTERA: MASTOTERMITIDAE) , 2006, Journal of Paleontology.

[24]  R. Meier,et al.  A phylogenetic analysis of Dictyoptera ( Insecta ) based on morphological characters , 2006 .

[25]  R. Gioia,et al.  The First Fossil Termitidae (Isoptera) from the Oligocene of South America: the Entre-Córregos Formation of the Aiuruoca Basin, Minas Gerais, Brazil , 2006 .

[26]  E. Wilson,et al.  Eusociality: origin and consequences. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[27]  D. Grimaldi,et al.  Primitive New Ants in Cretaceous Amber from Myanmar, New Jersey, and Canada (Hymenoptera: Formicidae) , 2005 .

[28]  M. Engel,et al.  Family-Group Names for Termites (Isoptera) , 2004 .

[29]  M. Engel,et al.  An Overlooked Family group Name For Termites lIsopterar , 2004 .

[30]  D. Grimaldi,et al.  The First Cretaceous Rhinotermitidae (Isoptera): A New Species, Genus, and Subfamily in Burmese Amber , 2003 .

[31]  Torsten Wappler Systematik, Phylogenie, Taphonomie und Paläoökologie der Insekten aus dem Mittel-Eozän des Eckfelder Maares, Vulkaneifel , 2003 .

[32]  K. Klass,et al.  Phylogeny of the Dictyoptera Re-examined (Insecta) , 2003 .

[33]  J. Prokop Remarks on palaeoenvironmental changes based on reviewed Tertiary insect associations from the Krusne hory piedmont basin and the Ceske stredohori Mts in Northwestern Bohemia [Czech Republic] , 2003 .

[34]  A. Rasnitsyn,et al.  Ants (Hymenoptera: Formicidae) of Formation Green River and some other Middle Eocene deposits of North America , 2002 .

[35]  C. Noirot,et al.  Gut characters and phylogeny of the higher termites (Isoptera: Termitidae). A cladistic analysis , 2002 .

[36]  A. V. Gorokhov,et al.  History of Insects , 2002, Springer Netherlands.

[37]  D. Bottjer,et al.  10. Rates and Processes of Terrestrial Nutrient Cycling in the Paleozoic: The World Before Beetles, Termites, and Flies , 2001 .

[38]  M. Engel A MONOGRAPH OF THE BALTIC AMBER BEES AND EVOLUTION OF THE APOIDEA (HYMENOPTERA) , 2001 .

[39]  D. Grimaldi,et al.  A formicine in New Jersey cretaceous amber (Hymenoptera: formicidae) and early evolution of the ants. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[40]  R. Crozier,et al.  Phylogenetic evidence for a single, ancestral origin of a ‘true’ worker caste in termites , 2000 .

[41]  David T. Jones,et al.  Morphological phylogenetics of termites (Isoptera) , 2000 .

[42]  H. Noda,et al.  Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches , 2000, Current Biology.

[43]  D. Grimaldi,et al.  Early Fossil History of the Termites , 2000 .

[44]  D. Grimaldi,et al.  A new subfamily, genus, and species of termite (Isoptera) from New Jersey Cretaceous amber , 2000 .

[45]  Dany Azar Les ambres mesozoiques du liban , 2000 .

[46]  Atsuko Sugimoto,et al.  Global Impact of Termites on the Carbon Cycle and Atmospheric Trace Gases , 2000 .

[47]  D. Bignell,et al.  Termites in Ecosystems , 2000 .

[48]  P. Eggleton,et al.  Global Patterns of Termite Diversity , 2000 .

[49]  H. Wiering The bees of the world , 2000 .

[50]  L. Jacobs,et al.  The Origin of Grass-Dominated Ecosystems , 1999 .

[51]  G. Poinar,et al.  The Amber Forest: A Reconstruction of a Vanished World. , 1999 .

[52]  L. Webb,et al.  The Tropical Rain Forest: An Ecological Study , 1997 .

[53]  James M. Carpenter,et al.  New and rediscovered primitive ants (Hymenoptera: Formicidae) in Cretaceous amber from New Jersey, and their phylogenetic relationships , 1997 .

[54]  K. Kjer,et al.  Phylogenetic relationship among termite families based on DNA sequence of mitochondrial 16S ribosomal RNA gene , 1996, Insect molecular biology.

[55]  R. Whittaker,et al.  The Tropical Rain Forest: An Ecological Study, 2nd edn. , 1996 .

[56]  S. Buchmann,et al.  Honey bee-native bee competition: focal point for environmental change and apicultural response in Australia , 1996 .

[57]  T. Moore,et al.  Delineation of the distinctive nature of tertiary coal beds , 1995 .

[58]  A. Scott,et al.  Coal and Coal-bearing Strata: Recent Advances , 1993 .

[59]  E. Jarzembowski The Weald Clay of the Weald: report of 1988/89 field meetings , 1991 .

[60]  D. Roubik,et al.  Sporadic food competition with the African honey bee: projected impact on neotropical social bees , 1986, Journal of Tropical Ecology.

[61]  A. Boucot,et al.  Oldest termite nest from the Upper Cretaceous of west Texas , 1986 .

[62]  E. Jarzembowski An early Cretaceous termite from southern England (Isoptera: Hodotermitidae) , 1981 .

[63]  E. Jarzembowski Fossil insects from the Bembridge Marls, Palaeogene of the Isle of Wight, southern England , 1980 .

[64]  E. Jarzembowski Insect fossils from the Wealden of the Weald , 1976 .

[65]  C. Brooke Worth,et al.  The Insect Societies , 1973 .

[66]  W. Sands,et al.  16 – The Association of Termites and Fungi , 1969 .

[67]  Ashley B. Gurney,et al.  Evolutionary Studies of Cockroaches , 1965 .

[68]  N. Holmgren Termitenstudien. 2. Systematik der Termiten. Die Familien Mastotermitidae, protermitidae und Mesotermitidae , 1911 .

[69]  N. Holmgren Das System der Termiten , 1910 .

[70]  J. Desneux A propos de la phylogénie des Termitides , 1904 .

[71]  O. Heer Die Insektenfauna der Tertiärgebilde von Oeningen und von Radoboj in Croatien. , 1847 .