Molecular breeding to develop advanced lines with high oleic acid and pod yield in peanut

[1]  A. Krapovickas,et al.  Taxonomía del género Arachis (Leguminosae) , 2023, Bonplandia.

[2]  Yanyan Tang,et al.  Breeding of a new variety of peanut with high-oleic-acid content and high-yield by marker-assisted backcrossing , 2022, Molecular Breeding.

[3]  Xiao Wang,et al.  QTL mapping of quality traits in peanut using whole-genome resequencing , 2021 .

[4]  E. Cahoon,et al.  Molecular-assisted breeding for soybean with high oleic/low linolenic acid and elevated vitamin E in the seed oil , 2021, Molecular Breeding.

[5]  M. Pandey,et al.  Combining High Oleic Acid Trait and Resistance to Late Leaf Spot and Rust Diseases in Groundnut (Arachis hypogaea L.) , 2020, Frontiers in Genetics.

[6]  R. Varshney,et al.  Improvement of three popular Indian groundnut varieties for foliar disease resistance and high oleic acid using SSR markers and SNP array in marker-assisted backcrossing , 2020, The Crop Journal.

[7]  Zheng Zheng,et al.  Marker-assisted backcrossing to improve seed oleic acid content in four elite and popular peanut (Arachis hypogaea L.) cultivars with high oil content , 2019, Breeding science.

[8]  Dongxin Huai,et al.  Four QTL clusters containing major and stable QTLs for saturated fatty acid contents in a dense genetic map of cultivated peanut (Arachis hypogaea L.) , 2019, Molecular Breeding.

[9]  B. Uzun,et al.  Influences of genotype and location interactions on oil, fatty acids and agronomical properties of groundnuts , 2018, Grasas y Aceites.

[10]  J. H. Kamdar,et al.  Improving oil quality by altering levels of fatty acids through marker-assisted selection of ahfad2 alleles in peanut (Arachis hypogaea L.) , 2018, Euphytica.

[11]  X. Chi,et al.  High-Density Genetic Map Construction and Identification of QTLs Controlling Oleic and Linoleic Acid in Peanut using SLAF-seq and SSRs , 2018, Scientific Reports.

[12]  Jia Gu,et al.  fastp: an ultra-fast all-in-one FASTQ preprocessor , 2018, bioRxiv.

[13]  H. L. Nadaf,et al.  Novel Mutations in Oleoyl-PC Desaturase ( ahFAD2B ) Identified from New High Oleic Mutants Induced by Gamma Rays in Peanut , 2017 .

[14]  B. Uzun,et al.  Oil Content, Oil Yield and Fatty Acid Profile of Groundnut Germplasm in Mediterranean Climates , 2017 .

[15]  David C. Norris,et al.  Integrated genome browser: visual analytics platform for genomics , 2015, bioRxiv.

[16]  M. Wang,et al.  Newly identified natural high-oleate mutant from Arachis hypogaea L. subsp. hypogaea , 2015, Molecular Breeding.

[17]  R. Varshney,et al.  Genetic Mapping of QTLs Controlling Fatty Acids Provided Insights into the Genetic Control of Fatty Acid Synthesis Pathway in Peanut (Arachis hypogaea L.) , 2015, PloS one.

[18]  J. B. Misra,et al.  Quality traits of Indian peanut cultivars and their utility as nutritional and functional food. , 2015, Food Chemistry.

[19]  R. Varshney,et al.  Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.) , 2014, BMC Genetics.

[20]  Jerry W. Davis,et al.  Oil, fatty acid, flavonoid, and resveratrol content variability and FAD2A functional SNP genotypes in the U.S. peanut mini-core collection. , 2013, Journal of agricultural and food chemistry.

[21]  H. L. Nadaf,et al.  Phenotypic and molecular dissection of ICRISAT mini core collection of peanut (Arachis hypogaea L.) for high oleic acid , 2012 .

[22]  Emmanuel Monyo,et al.  Advances in Arachis genomics for peanut improvement. , 2012, Biotechnology advances.

[23]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[24]  B. Pérez-Vich,et al.  Mapping of major and modifying genes for high oleic acid content in safflower , 2012, Molecular Breeding.

[25]  C. Wang,et al.  Sodium azide mutagenesis resulted in a peanut plant with elevated oleate content , 2011 .

[26]  M. Wang,et al.  A Simple Allele-Specific PCR Assay for Detecting FAD2 Alleles in Both A and B Genomes of the Cultivated Peanut for High-Oleate Trait Selection , 2010, Plant Molecular Biology Reporter.

[27]  Y. Chu,et al.  Two alleles of ahFAD2B control the high oleic acid trait in cultivated peanut. , 2009 .

[28]  B. Pérez-Vich,et al.  Inheritance of high oleic acid content in safflower , 2009, Euphytica.

[29]  Qingli Yang,et al.  Comparison of the Delta(12) fatty acid desaturase gene between high-oleic and normal-oleic peanut genotypes. , 2008, Journal of genetics and genomics = Yi chuan xue bao.

[30]  P. Escribá,et al.  Oleic acid content is responsible for the reduction in blood pressure induced by olive oil , 2008, Proceedings of the National Academy of Sciences.

[31]  A. Resurreccion,et al.  Functional Components in Peanuts , 2008, Critical reviews in food science and nutrition.

[32]  M. Çalışkan,et al.  Genotypic Differences for Reproductive Growth, Yield, and Yield Components in Groundnut (Arachis hypogaea L.) , 2008 .

[33]  Mehmet Arslan,et al.  Effects of sowing date and growth duration on growth and yield of groundnut in a Mediterranean-type environment in Turkey , 2008 .

[34]  Y. Chu,et al.  Frequency of a Loss-of-Function Mutation in Oleoyl-PC Desaturase ( ahFAD2A ) in the Mini-Core of the U.S. Peanut Germplasm Collection , 2007 .

[35]  A. Abbott,et al.  The naturally occurring high oleate oil character in some peanut varieties results from reduced oleoyl-PC desaturase activity from mutation of aspartate 150 to asparagine , 2001 .

[36]  O. D. Smith,et al.  Isolation and characterization of the Δ12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in Spanish market-type lines , 2000, Theoretical and Applied Genetics.

[37]  A. Abbott,et al.  The high oleate trait in the cultivated peanut [Arachis hypogaea L.]. II. Molecular basis and genetics of the trait , 2000, Molecular and General Genetics MGG.

[38]  F. Teulé,et al.  The high oleate trait in the cultivated peanut [Arachis hypogaea L.]. I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases , 2000, Molecular and General Genetics MGG.

[39]  D. Gorbet,et al.  Registration of ‘SunOleic 95R’ Peanut , 1997 .

[40]  C. Sims,et al.  Flavor and Oxidative Stability of Roasted High Oleic Acid Peanuts , 1995 .

[41]  R. Garcés,et al.  One-step lipid extraction and fatty acid methyl esters preparation from fresh plant tissues. , 1993, Analytical biochemistry.

[42]  D. Knauft,et al.  The Inheritance of High Oleic Acid in Peanut , 1989 .

[43]  H. Upadhyaya,et al.  Characterization of groundnut (Arachis hypogaea L.) collection using quantitative and qualitative traits in the Mediterranean Basin , 2018 .

[44]  R. Varshney,et al.  Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes. , 2016, Plant science : an international journal of experimental plant biology.

[45]  S. N. Nigam,et al.  Phenotyping for Groundnut (Arachis hypogaea L.) Improvement , 2013 .

[46]  C. Wang,et al.  Identification of a novel mutation in FAD2B from a peanut EMS mutant with elevated oleate content. , 2012, Journal of oleo science.

[47]  S. N. Nigam,et al.  Molecular breeding of groundnut for enhanced productivity and food security in the semi- arid tropics: opportunities and challenges , 2003 .

[48]  W. Friedt,et al.  Development of molecular markers for high oleic acid content in sunflower (Helianthus annuus L.) , 1998 .

[49]  J. Doyle,et al.  A rapid total DNA preparation procedure for fresh plant tissue , 1990 .

[50]  D. A. Knauft,et al.  Variability in oil quality among peanut genotypes in the Florida breeding program , 1987 .