ALIGNMENTS OF BLACK HOLES WITH THEIR WARPED ACCRETION DISKS AND EPISODIC LIFETIMES OF ACTIVE GALACTIC NUCLEI

Warped accretion disks have attracted intense attention because of their critical role in shaping the spin of supermassive massive black holes (SMBHs) through the Bardeen–Petterson effect, a general relativistic effect that leads to final alignments or anti-alignments between black holes and warped accretion disks. We study such alignment processes by explicitly taking into account the finite sizes of accretion disks and the episodic lifetimes of active galactic nuclei (AGNs) that delineate the duration of gas fueling onto accretion disks. We employ an approximate global model to simulate the evolution of accretion disks, allowing us to determine the gravitomagnetic torque that drives the alignments in a simple way. We then track down the evolutionary paths for mass and spin of black holes both in a single activity episode and over a series of episodes. Given with randomly and isotropically oriented gas fueling over episodes, we calculate the spin evolution with different episodic lifetimes and find that it is quite sensitive to the lifetimes. We therefore propose that the spin distribution of SMBHs can place constraints on the episodic lifetimes of AGNs and vice versa. The applications of our results on the observed spin distributions of SMBHs and the observed episodic lifetimes of AGNs are discussed, although both measurements at present are too ambiguous for us to draw a firm conclusion. Our prescription can be easily incorporated into semi-analytic models for black hole growth and spin evolution.

[1]  Astrophysics,et al.  THE BLACK HOLE MASS SCALE OF CLASSICAL AND PSEUDO BULGES IN ACTIVE GALAXIES , 2014, 1406.6137.

[2]  D. M. Teixeira,et al.  NO EVIDENCE FOR BARDEEN–PETTERSON ALIGNMENT IN GRMHD SIMULATIONS AND SEMI-ANALYTIC MODELS OF MODERATELY THIN, PROGRADE, TILTED ACCRETION DISKS , 2014, 1406.5515.

[3]  B. Trakhtenbrot THE MOST MASSIVE ACTIVE BLACK HOLES AT z ∼ 1.5–3.5 HAVE HIGH SPINS AND RADIATIVE EFFICIENCIES , 2014, 1405.5877.

[4]  A. Sesana,et al.  Too fast for chaotic, too slow for coherent: the missing link between accretion, massive black hole spins and galaxy kinematics , 2014 .

[5]  A. Sesana,et al.  LINKING THE SPIN EVOLUTION OF MASSIVE BLACK HOLES TO GALAXY KINEMATICS , 2014, 1402.7088.

[6]  M. Watson,et al.  TOWARD THE STANDARD POPULATION SYNTHESIS MODEL OF THE X-RAY BACKGROUND: EVOLUTION OF X-RAY LUMINOSITY AND ABSORPTION FUNCTIONS OF ACTIVE GALACTIC NUCLEI INCLUDING COMPTON-THICK POPULATIONS , 2014, 1402.1836.

[7]  J. Silk,et al.  Black hole evolution – II. Spinning black holes in a supernova-driven turbulent interstellar medium , 2014, 1401.1220.

[8]  M. McQuinn,et al.  The case against large intensity fluctuations in the z ∼ 2.5 He ii Lyα forest , 2013, 1306.4985.

[9]  Youjun Lu,et al.  Radiative efficiency of disc accretion in individual SDSS QSOs , 2013, 1310.0560.

[10]  C. Steidel,et al.  CONSTRAINTS ON HYPERLUMINOUS QSO LIFETIMES VIA FLUORESCENT Lyα EMITTERS AT Z ≃ 2.7 , 2013, 1308.1678.

[11]  L. Brenneman Measuring the Angular Momentum of Supermassive Black Holes , 2013 .

[12]  Martin P. Ward,et al.  A new way to measure supermassive black hole spin in accretion disc dominated Active Galaxies , 2013, 1306.4786.

[13]  C. Reynolds,et al.  Measuring Black Hole Spin Using X-Ray Reflection Spectroscopy , 2013, 1302.3260.

[14]  M. Ruszkowski,et al.  Chaotic cold accretion on to black holes , 2013, 1301.3130.

[15]  Yan-Rong Li,et al.  EVOLUTION OF WARPED ACCRETION DISKS IN ACTIVE GALACTIC NUCLEI. I. ROLES OF FEEDING AT THE OUTER BOUNDARIES , 2012, 1212.2186.

[16]  R. Blandford,et al.  Alignment of Magnetized Accretion Disks and Relativistic Jets with Spinning Black Holes , 2012, Science.

[17]  A. Perego,et al.  ON THE ORIENTATION AND MAGNITUDE OF THE BLACK HOLE SPIN IN GALACTIC NUCLEI , 2012, 1211.4871.

[18]  Andrea Merloni,et al.  THE EVOLUTION OF ACTIVE GALACTIC NUCLEI AND THEIR SPINS , 2012, 1210.1025.

[19]  S. Nayakshin,et al.  THE OBSERVED M–σ RELATIONS IMPLY THAT SUPER-MASSIVE BLACK HOLES GROW BY COLD CHAOTIC ACCRETION , 2012, 1203.3450.

[20]  L. Ho,et al.  COSMOLOGICAL EVOLUTION OF SUPERMASSIVE BLACK HOLES. II. EVIDENCE FOR DOWNSIZING OF SPIN EVOLUTION , 2012, 1202.3516.

[21]  P. Hopkins,et al.  Why Are AGN and Host Galaxies Misaligned , 2011, 1111.1236.

[22]  D. Pogosyan,et al.  Feeding compact bulges and supermassive black holes with low angular momentum cosmic gas at high redshift , 2011, 1112.2479.

[23]  Cambridge,et al.  Can we measure the accretion efficiency of active galactic nuclei , 2011, 1109.6225.

[24]  L. Ho,et al.  COSMOLOGICAL EVOLUTION OF SUPERMASSIVE BLACK HOLES. I. MASS FUNCTION AT 0 < z ≲ 2 , 2011, 1109.0089.

[25]  A. Sa̧dowski,et al.  Constraints on the black hole spin in the quasar SDSS J094533.99+100950.1 , 2011, 1104.2734.

[26]  A. Laor,et al.  THE RADIATIVE EFFICIENCY OF ACCRETION FLOWS IN INDIVIDUAL ACTIVE GALACTIC NUCLEI , 2010, 1012.3213.

[27]  J. Goodman,et al.  STAR FORMATION IN A QUASAR DISK , 2010, 1011.3541.

[28]  Z. Shao,et al.  THE ORIENTATION OF THE NUCLEAR OBSCURER OF THE ACTIVE GALACTIC NUCLEI , 2010, 1011.2802.

[29]  Yan-Rong Li,et al.  ACCRETION DISKS IN ACTIVE GALACTIC NUCLEI: GAS SUPPLY DRIVEN BY STAR FORMATION , 2010, 1007.4060.

[30]  Andrew J. Benson,et al.  Galaxy formation spanning cosmic history , 2010, 1003.0011.

[31]  University of Exeter,et al.  On the diffusive propagation of warps in thin accretion discs , 2010, 1002.2973.

[32]  Jarrett L. Johnson,et al.  Supernovae‐induced accretion and star formation in the inner kiloparsec of a gaseous disc , 2010, 1002.0590.

[33]  C. Baugh,et al.  Grand unification of AGN activity in the ΛCDM cosmology , 2009, 0911.1128.

[34]  P. C. Fragile EFFECTIVE INNER RADIUS OF TILTED BLACK HOLE ACCRETION DISKS , 2009, 0910.5721.

[35]  A. Perego,et al.  Mass and spin co-evolution during the alignment of a black hole in a warped accretion disc , 2009, 0907.3742.

[36]  F. Yuan,et al.  A steady-state solution for warped accretion discs , 2009, 0905.3935.

[37]  Shu Zhang,et al.  EPISODIC RANDOM ACCRETION AND THE COSMOLOGICAL EVOLUTION OF SUPERMASSIVE BLACK HOLE SPINS , 2009, 0904.1896.

[38]  D. Kirkman,et al.  The transverse proximity effect in the z∼ 2 Lyman α forest suggests quasi-stellar object episodic lifetimes of ∼1 Myr , 2008, 0809.2277.

[39]  Physics,et al.  Mid-Infrared spectroscopic properties of ultra-luminous infrared quasars , 2008, 0807.3653.

[40]  Ramesh Narayan,et al.  Mass fall-back and accretion in the central engine of gamma-ray bursts , 2008, 0807.0441.

[41]  K. Wada,et al.  Coevolution of Supermassive Black Holes and Circumnuclear Disks , 2008, 0803.2271.

[42]  A. R. King,et al.  The evolution of black hole mass and spin in active galactic nuclei , 2008, 0801.1564.

[43]  C. Steidel,et al.  Detection of the Transverse Proximity Effect: Radiative Feedback from Bright QSOs , 2007, 0711.4113.

[44]  USA,et al.  SELF-CONSISTENT MODELS OF THE AGN AND BLACK HOLE POPULATIONS: DUTY CYCLES, ACCRETION RATES, AND THE MEAN RADIATIVE EFFICIENCY , 2007, 0710.4488.

[45]  G. Richards,et al.  Biases in Virial Black Hole Masses: An SDSS Perspective , 2007, 0709.3098.

[46]  C. Tout,et al.  Alignment and precession of a black hole with a warped accretion disc , 2007, 0708.2034.

[47]  Cambridge,et al.  Warp diffusion in accretion discs: a numerical investigation , 2007, 0708.1124.

[48]  Marek Sikora,et al.  Black Hole Spin and Galactic Morphology , 2007, 0706.3900.

[49]  C. Leitherer,et al.  An Atlas of the Circumnuclear Regions of 75 Seyfert Galaxies in the Near-Ultraviolet with the Hubble Space Telescope Advanced Camera for Surveys , 2007, 0704.3617.

[50]  L. Wisotzki,et al.  The transverse proximity effect in spectral hardness on the line of sight towards HE 2347-4342 , 2007, 0704.0187.

[51]  S. Lilly,et al.  Plausible Fluorescent Lyα Emitters around the z = 3.1 QSO 0420–388 , 2006, astro-ph/0611449.

[52]  Y. Levin Starbursts near supermassive black holes: young stars in the Galactic Centre, and gravitational waves in LISA band , 2006, astro-ph/0603583.

[53]  J. Pringle,et al.  Growing supermassive black holes by chaotic accretion , 2006, astro-ph/0609598.

[54]  E. Carretti,et al.  B-Mode contamination by synchrotron emission from 3-years WMAP data , 2006, astro-ph/0609288.

[55]  Yan-mei Chen,et al.  Cosmological Evolution of the Duty Cycle of Quasars , 2006, astro-ph/0606704.

[56]  S. Baum,et al.  A Survey of Kiloparsec-Scale Radio Outflows in Radio-Quiet Active Galactic Nuclei , 2006, astro-ph/0604219.

[57]  G. Pringle,et al.  The evolution of misaligned accretion discs and spinning black holes , 2006, astro-ph/0602306.

[58]  L. Wisotzki,et al.  Quasars near the line of sight towards Q 0302-003 and the transverse proximity effect , 2006, astro-ph/0601374.

[59]  Arjun Dey,et al.  Black Hole Masses and Eddington Ratios at 0.3 < z < 4 , 2005, astro-ph/0508657.

[60]  J. Kollmeier,et al.  Possible Detection of Lyα Fluorescence from a Damped Lyα System at Redshift z ~ 2.8 , 2005, astro-ph/0509229.

[61]  J. Pringle,et al.  Aligning spinning black holes and accretion discs , 2005, astro-ph/0507098.

[62]  J. Dunlop,et al.  The cosmological evolution of quasar black hole masses , 2003, astro-ph/0405393.

[63]  R. Della Ceca,et al.  Coevolution of Black Holes and Galaxies , 2004 .

[64]  A. Kinney,et al.  A Hubble Space Telescope Survey of Extended [O III] λ5007 Å Emission in a Far-Infrared-Selected Sample of Seyfert Galaxies: Results , 2003, astro-ph/0307255.

[65]  J. Magorrian,et al.  Active galactic nuclei and the minor merger hypothesis , 2003, astro-ph/0305079.

[66]  Jeremy Goodman,et al.  Self-gravity and quasi-stellar object discs , 2003 .

[67]  S. Wagner,et al.  Caught in the act: A helium-reionizing quasar near the line of sight to Q0302-003 , 2002, astro-ph/0211035.

[68]  J. Pringle,et al.  The evolution of a warped disc around a Kerr black hole , 2002, astro-ph/0208206.

[69]  C. Norman,et al.  Obscuring Material around Seyfert Nuclei with Starbursts , 2002, astro-ph/0201035.

[70]  A. Kinney,et al.  Jet Directions in Seyfert Galaxies , 2000, astro-ph/0002131.

[71]  Richard P. NelsonJohn C.B. Papaloizou,et al.  Hydrodynamic simulations of the Bardeen–Petterson effect , 2000, astro-ph/0001439.

[72]  J. Papaloizou,et al.  HYDRODYNAMIC SIMULATIONS OF PROPAGATING WARPS AND BENDING WAVES IN ACCRETION DISCS , 1999, astro-ph/9907076.

[73]  G. Ogilvie,et al.  The non-linear fluid dynamics of a warped accretion disc , 1998, astro-ph/9812073.

[74]  P. Natarajan,et al.  The Alignment of Disk and Black Hole Spins in Active Galactic Nuclei , 1998, astro-ph/9808187.

[75]  L. Hernquist,et al.  Transformations of Galaxies. II. Gasdynamics in Merging Disk Galaxies: Addendum , 1996 .

[76]  P. Scheuer,et al.  THE REALIGNMENT OF A BLACK HOLE MISALIGNED WITH ITS ACCRETION DISC , 1996 .

[77]  D. Lin,et al.  0n the dynamics of warped accretion disks , 1995 .

[78]  J. Pringle A simple approach to the evolution of twisted accretion discs , 1992 .

[79]  M. Begelman,et al.  Self-gravitating accretion disks in active galactic nuclei , 1987, Nature.

[80]  Andrzej Soƚtan,et al.  Masses of quasars , 1982 .

[81]  J. E. Pringle,et al.  Accretion Discs in Astrophysics , 1981 .

[82]  B. Paczyński A model of selfgravitating accretion disk. , 1978 .

[83]  J. Bardeen,et al.  The Lense-Thirring Effect and Accretion Disks around Kerr Black Holes , 1975 .

[84]  K. Thorne Disk-Accretion onto a Black Hole. II. Evolution of the Hole , 1974 .

[85]  William H. Press,et al.  Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation , 1972 .

[86]  D. Lynden-Bell,et al.  Galactic Nuclei as Collapsed Old Quasars , 1969, Nature.

[87]  Edwin E. Salpeter,et al.  Accretion of Interstellar Matter by Massive Objects. , 1964 .