Photonics and lasing in liquid crystal materials

Owing to fundamental reasons of symmetry, liquid crystals are soft materials. This softness allows long length-scales, large susceptibilities and the existence of modulated phases, which respond readily to external fields. Liquid crystals with such phases are tunable, self-assembled, photonic band gap materials; they offer exciting opportunities both in basic science and in technology. Since the density of photon states is suppressed in the stop band and is enhanced at the band edges, these materials may be used as switchable filters or as mirrorless lasers. Disordered periodic liquid crystal structures can show random lasing. We highlight recent advances in this rapidly growing area, and discuss future prospects in emerging liquid crystal materials. Liquid crystal elastomers and orientationally ordered nanoparticle assemblies are of particular interest.

[1]  D. Wiersma,et al.  Temperature-controlled random laser action in liquid crystal infiltrated systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  J. Schmidtke,et al.  Photonic defect modes in cholesteric liquid crystal films , 2003, The European physical journal. E, Soft matter.

[3]  P. Palffy-Muhoray,et al.  51.3: Lasing in Cholesteric Liquid Crystals , 2000 .

[4]  J. Wendorff,et al.  Cholesteric Mixtures with Photochemically Tunable, Circularly Polarized Fluorescence , 2003 .

[5]  J C Viénot,et al.  [Laser emission]. , 1966, Applied optics.

[6]  Shiyoshi Yokoyama,et al.  Laser Emission from a Polymer‐Stabilized Liquid‐Crystalline Blue Phase , 2006 .

[7]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[8]  Masanori Ozaki,et al.  Discontinuous Shift of Lasing Wavelength with Temperature in Cholesteric Liquid Crystal , 2003 .

[9]  S. Kawata,et al.  Two-photon lasing of dye-doped photonic crystal lasers , 2004 .

[10]  H. Nguyen,et al.  Blue phases and twist grain boundary phases (TGBA and TGBC) in a series of fluoro-substituted chiral tolane derivatives , 1997 .

[11]  Zhao-Qing Zhang,et al.  Lasing in chiral photonic structures , 2003 .

[12]  Lubensky,et al.  Abrikosov dislocation lattice in a model of the cholesteric-to-smectic-A transition. , 1988, Physical review. A, General physics.

[13]  Peter Palffy-Muhoray,et al.  Lasing Thresholds of Cholesteric Liquid Crystals Lasers , 2005 .

[14]  P. D. Gennes,et al.  An analogy between superconductors and smectics A , 1972 .

[15]  Z. Q. Zhang,et al.  Large coherence area thin-film photonic stop-band lasers. , 2000, Physical Review Letters.

[16]  Sung Tae Kim,et al.  Laser Emission in a Dye Doped Cholesteric Polymer Network , 2002 .

[17]  V. A. Beli︠a︡kov Diffraction optics of complex-structured periodic media , 1992 .

[18]  E. O. Arikainen,et al.  Laser-induced concentric colour domains in a cholesteric liquid crystal mixture containing a nematic azobenzene dopant , 2002 .

[19]  Vladilen S. Letokhov,et al.  Quantum Statistics of Multi-mode Radiation from an Ensemble of Atoms , 1968 .

[20]  Masanori Ozaki,et al.  Electrically tunable waveguide laser based on ferroelectric liquid crystal , 2003 .

[21]  Oleg Yaroshchuk,et al.  Influence of the light-induced molecular transformations on the helix pitch and lasing spectra of cholesteric liquid crystals , 2004, Other Conferences.

[22]  Faceted monodomains of liquid crystal smectic blue phases. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Sung Tae Kim,et al.  Cholesteric Liquid Single-Crystal Elastomers (LSCE) Obtained by the Anisotropic Deswelling Method , 2001 .

[24]  Masayuki Yokota,et al.  Polymer-stabilized liquid crystal blue phases , 2002, Nature materials.

[25]  H. Kogelnik,et al.  STIMULATED EMISSION IN A PERIODIC STRUCTURE , 1971 .

[26]  Peter Palffy-Muhoray,et al.  Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II , 2002, Nature materials.

[27]  C. Bailey,et al.  Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor , 2004 .

[28]  R. J. Potton,et al.  Reciprocity in optics , 2004 .

[29]  Masanori Ozaki,et al.  Mirrorless Lasing in a Dye‐Doped Ferroelectric Liquid Crystal , 2002 .

[30]  A. De Luca,et al.  Color-tunable organic microcavity laser array using distributed feedback. , 2005, Physical review letters.

[31]  V. Kopp,et al.  Lasing from a Stiff Chain Polymeric Lyotropic Cholesteric Liquid Crystal , 2002 .

[32]  Wenyi Cao Fluorescence and lasing in liquid crystalline photonic bandgap materials , 2005 .

[33]  Peter Palffy-Muhoray,et al.  Tunable Mirrorless Lasing in Cholesteric Liquid Crystalline Elastomers , 2001 .

[34]  G. Floquet,et al.  Sur les équations différentielles linéaires à coefficients périodiques , 1883 .

[35]  R. Vaia,et al.  Tunable two-photon pumped lasing using a holographic polymer-dispersed liquid-crystal grating as a distributed feedback element , 2003 .

[36]  V. Kopp,et al.  Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals. , 1998, Optics letters.

[37]  A. Genack,et al.  Light controllable tuning and switching of lasing in chiral liquid crystals. , 2005, Optics express.

[38]  Peter Palffy-Muhoray,et al.  Mirrorless Lasing and Energy Transfer in Cholesteric Liquid Crystals Doped with Laser Dyes , 2001 .

[39]  Hiroshi Yokoyama,et al.  Optical isotropy and iridescence in a smectic ‘blue phase’ , 2005, Nature.

[40]  Hl. de Vries Rotatory power and other optical properties of certain liquid crystals , 1951 .

[41]  J. S. Patel,et al.  Characterization of a new helical smectic liquid crystal , 1989, Nature.

[42]  Sommers,et al.  Photonic bands in simple and body-centered-cubic cholesteric blue phases. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[43]  Jürgen Schmidtke,et al.  Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment , 2003 .

[44]  Jisoo Hwang,et al.  Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions , 2005, Nature materials.

[45]  D. Wiersma,et al.  Quasi-two-dimensional diffusive random laser action. , 2004, Physical review letters.

[46]  P Palffy-Muhoray,et al.  Ultraviolet lasing in cholesteric liquid crystals. , 2001, Optics letters.

[47]  Junji Watanabe,et al.  Effect of Phase Retardation on Defect‐Mode Lasing in Polymeric Cholesteric Liquid Crystals , 2004 .

[48]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[49]  M. Ozaki,et al.  Electro‐Tunable Liquid‐Crystal Laser , 2003 .

[50]  E. A. Tikhonov,et al.  Generation of a tunable radiation by impurity cholesteric liquid crystals , 1980 .

[51]  A. D. Ford,et al.  Electronic control of nonresonant random lasing from a dye-doped smectic A* liquid crystal scattering device , 2005 .

[52]  Andro Chanishvili,et al.  Phototunable lasing in dye-doped cholesteric liquid crystals , 2003 .

[53]  Andro Chanishvili,et al.  Lasing in Dye‐Doped Cholesteric Liquid Crystals: Two New Tuning Strategies , 2004 .

[54]  A. Genack,et al.  Lasing and Narrowing of Spontaneous Emission from Responsive Cholesteric Films , 2004 .

[55]  Masanori Ozaki,et al.  Twist-Defect-Mode Lasing in Photopolymerized Cholesteric Liquid Crystal , 2003 .

[56]  Harry J. Coles,et al.  Liquid crystal ‘blue phases’ with a wide temperature range , 2005, Nature.