QoS based Radio Resource Management Techniques for Next Generation MU-MIMO WLANs: A Survey

IEEE 802.11 based Wireless Local Area Networks (WLANs) have emerged as a popular candidate that offers Internet services for wireless users. The demand of data traffic is increasing every day due to the increase in the use of multimedia applications, such as digital audio, video, and online gaming. With the inclusion of Physical Layer (PHY) technologies, such as the OFDM and MIMO, the current 802.11ac WLANs are claiming Gigabit speeds. Hence, the existing Medium Access Control (MAC) must be in a suitable position to convert the offered PHY data rates for efficient throughput. Further, the integration of cellular networks with WLANs requires unique changes at MAC layer. It is highly required to preserve the Quality of Service (QoS) in these scenarios. Fundamentally, many QoS issues arise from the problem of effective Radio Resource Management (RRM). Although IEEE 802.11 has lifted PHY layer aspects, there is a necessity to investigate MAC layer issues, such as resource utilization, scheduling, admission control and congestion control. In this survey, a literature overview of these techniques, namely the resource allocation and scheduling algorithms are briefly discussed in connection with the QoS at MAC layer. Further, some anticipated enhancements proposed for Multi-User Multiple-Input and Multiple-Output (MU-MIMO) WLANs are discussed.

[1]  R. Srikant,et al.  Fair resource allocation in wireless networks using queue-length-based scheduling and congestion control , 2007, TNET.

[2]  Khaled M. F. Elsayed,et al.  Channel-Aware Earliest Deadline Due Fair Scheduling for Wireless Multimedia Networks , 2006, Wirel. Pers. Commun..

[3]  Balasubramanian Appiah Venkatakrishnan,et al.  An enhanced HCF for IEEE 802.11e wireless networks , 2004, MSWiM '04.

[4]  Joachim Speidel,et al.  Advances in MIMO Techniques for Mobile Communications - A Survey , 2010, Int. J. Commun. Netw. Syst. Sci..

[5]  Jean-François Hélard,et al.  PHY+MAC channel sounding interval analysis for IEEE 802.11ac MU-MIMO , 2012, 2012 International Symposium on Wireless Communication Systems (ISWCS).

[6]  Panganamala Ramana Kumar,et al.  RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN , 2001 .

[7]  Bo Hu,et al.  Proportional Resource Allocation with Subcarrier Grouping in OFDM Wireless Systems , 2013, IEEE Communications Letters.

[8]  Hongqiang Zhai,et al.  Supporting QoS in IEEE 802.11e wireless LANs , 2006, IEEE Transactions on Wireless Communications.

[9]  Rajeev Agrawal,et al.  Downlink scheduling and resource allocation for OFDM systems , 2009, IEEE Transactions on Wireless Communications.

[10]  Arafet Ben Makhlouf,et al.  Dynamic Multiuser Sub-Channels Allocation and Real-Time Aggregation Model for IEEE 802.11 WLANs , 2014, IEEE Transactions on Wireless Communications.

[11]  Shanshan Wu,et al.  Performance Study on a CSMA/CA-Based MAC Protocol for Multi-User MIMO Wireless LANs , 2014, IEEE Transactions on Wireless Communications.

[12]  Fathi E. Abd El-Samie,et al.  Adaptive Resource Allocation Algorithms for Multi-user MIMO-OFDM Systems , 2015, Wirel. Pers. Commun..

[13]  Erik G. Larsson,et al.  Massive MIMO for next generation wireless systems , 2013, IEEE Communications Magazine.

[14]  Matthew S. Gast,et al.  802.11 Wireless Networks: The Definitive Guide , 2002 .

[15]  Mo Li,et al.  Fair QoS multi-resource allocation for wireless LAN , 2014, 2014 IEEE 22nd International Symposium of Quality of Service (IWQoS).

[16]  Chiu Ngo,et al.  MAC enhancements for downlink multi-user MIMO transmission in next generation WLAN , 2012, 2012 IEEE Consumer Communications and Networking Conference (CCNC).

[17]  Weihua Zhuang,et al.  A Distributed Multi-User MIMO MAC Protocol for Wireless Local Area Networks , 2008, IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference.

[18]  Ling Teck Chaw,et al.  IMPROVING QOS IN WLAN USING DYNAMIC WEIGHTED FAIR SCHEDULING , 2010 .

[19]  Thierry Turletti,et al.  A survey of QoS enhancements for IEEE 802.11 wireless LAN , 2004, Wirel. Commun. Mob. Comput..

[20]  Jaume Barceló,et al.  On the Performance of Packet Aggregation in IEEE 802.11ac MU-MIMO WLANs , 2012, IEEE Communications Letters.

[21]  Y. Harada,et al.  A QoS scheduler for IEEE 802.11e WLANs , 2004, First IEEE Consumer Communications and Networking Conference, 2004. CCNC 2004..

[22]  Khaled Ben Letaief,et al.  Adaptive resource allocation and scheduling for multiuser packet-based OFDM networks , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[23]  Sunghyun Choi,et al.  Analysis of IEEE 802.11e for QoS support in wireless LANs , 2003, IEEE Wireless Communications.

[24]  Kok-Lim Alvin Yau,et al.  QoS in IEEE 802.11-based wireless networks: A contemporary review , 2014, J. Netw. Comput. Appl..

[25]  Victor C. M. Leung,et al.  Fair Allocation of Subcarrier and Power in an OFDMA Wireless Mesh Network , 2006, IEEE Journal on Selected Areas in Communications.

[26]  Albert Banchs,et al.  Distributed weighted fair queuing in 802.11 wireless LAN , 2002, 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333).

[27]  Michelle X. Gong,et al.  A CSMA/CA MAC Protocol for Multi-User MIMO Wireless LANs , 2010, 2010 IEEE Global Telecommunications Conference GLOBECOM 2010.

[28]  Taeck-Geun Kwon,et al.  Scheduling algorithm for real-time burst traffic using dynamic weighted round robin , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[29]  Robert W. Heath,et al.  An overview of limited feedback in wireless communication systems , 2008, IEEE Journal on Selected Areas in Communications.

[30]  Lotfi Kamoun,et al.  PHY/MAC Enhancements and QoS Mechanisms for Very High Throughput WLANs: A Survey , 2013, IEEE Communications Surveys & Tutorials.

[31]  Robert W. Heath,et al.  Shifting the MIMO Paradigm , 2007, IEEE Signal Processing Magazine.

[32]  Andrea J. Goldsmith,et al.  Capacity limits of MIMO channels , 2003, IEEE J. Sel. Areas Commun..

[33]  Sangki Yun,et al.  Multi-point to multi-point MIMO in wireless LANs , 2013, 2013 Proceedings IEEE INFOCOM.

[34]  Nizar Zorba,et al.  Cross Layer QoS Guarantees in Multiuser WLAN Systems , 2009, Wirel. Pers. Commun..

[35]  T Selvam,et al.  A frame aggregation scheduler for IEEE 802.11n , 2010, 2010 National Conference On Communications (NCC).

[36]  Imrich Chlamtac,et al.  A survey of quality of service in IEEE 802.11 networks , 2004, IEEE Wirel. Commun..

[37]  Demosthenis Teneketzis,et al.  Multi-channel allocation in single-hop mobile networks with priorities , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[38]  Monisha Ghosh,et al.  A comparison of implicit and explicit channel feedback methods for MU-MIMO WLAN systems , 2013, 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).

[39]  Andrew T. Campbell,et al.  A survey of QoS architectures , 1998, Multimedia Systems.

[40]  Cyril Leung,et al.  An overview of scheduling algorithms in wireless multimedia networks , 2002, IEEE Wirel. Commun..

[41]  Shiao-Li Tsao,et al.  Extending earliest-due-date scheduling algorithms for wireless networks with location-dependent errors , 2000, Vehicular Technology Conference Fall 2000. IEEE VTS Fall VTC2000. 52nd Vehicular Technology Conference (Cat. No.00CH37152).

[42]  Boris Bellalta,et al.  IEEE 802.11ax: High-efficiency WLANS , 2015, IEEE Wireless Communications.

[43]  Khaled Ben Letaief,et al.  Multiuser OFDM with adaptive subcarrier, bit, and power allocation , 1999, IEEE J. Sel. Areas Commun..

[44]  Shivendra S. Panwar,et al.  CSMAC: A New Centralized Scheduling-Based MAC Protocol for Wireless LAN , 2009, 2009 IEEE Wireless Communications and Networking Conference.

[45]  Ji-Young Kwak,et al.  A Modified Dynamic Weighted Round Robin Cell Scheduling Algorithm , 2002 .

[46]  Georgios B. Giannakis,et al.  Cross-layer scheduling with prescribed QoS guarantees in adaptive wireless networks , 2005, IEEE Journal on Selected Areas in Communications.

[47]  Xin Wang,et al.  A cross-layer scheduling algorithm with QoS support in wireless networks , 2006, IEEE Transactions on Vehicular Technology.

[48]  Victor C. M. Leung,et al.  Multi-User Medium Access Control in Wireless Local Area Network , 2010, 2010 IEEE Wireless Communication and Networking Conference.

[49]  Chen-Khong Tham,et al.  A probabilistic priority scheduling discipline for multi-service networks , 2002, Comput. Commun..

[50]  Matthew S. Gast,et al.  802.11ac: A Survival Guide , 2013 .

[51]  Mohammad S. Obaidat,et al.  Modeling and Simulation of Computer Networks and Systems: Methodologies and Applications , 2015 .

[52]  Jaume Barceló,et al.  Performance analysis of IEEE 802.11ac wireless backhaul networks in saturated conditions , 2013, EURASIP J. Wirel. Commun. Netw..

[53]  Eldad Perahia,et al.  Next Generation Wireless LANs: 802.11n and 802.11ac , 2013 .

[54]  John N. Daigle,et al.  A distributed scheduling mechanism to improve quality of service in IEEE 802.11 ad hoc networks , 2011, 2011 IEEE Symposium on Computers and Communications (ISCC).

[55]  Boris Bellalta,et al.  MU-MIMO MAC Protocols for Wireless Local Area Networks: A Survey , 2014, IEEE Communications Surveys & Tutorials.

[56]  Lajos Hanzo,et al.  Multiuser MIMO-OFDM for Next-Generation Wireless Systems , 2007, Proceedings of the IEEE.

[57]  Nicolas Christin,et al.  A QoS architecture for quantitative service differentiation , 2003, IEEE Commun. Mag..

[58]  Jaume Barceló,et al.  On the Interactions Between Multiple Overlapping WLANs Using Channel Bonding , 2014, IEEE Transactions on Vehicular Technology.

[59]  R. Srikant,et al.  Fair scheduling in wireless packet networks , 1999, TNET.

[60]  S. Nagarajan,et al.  Enhanced QoS by Service Differentiation in MAC-Layer for WLAN , 2012 .

[61]  Mats Bengtsson,et al.  Cross-layer scheduling for multi-user MIMO systems , 2006, IEEE Communications Magazine.

[62]  Yang Xiao IEEE 802.11e: QoS provisioning at the MAC layer , 2004, IEEE Wirel. Commun..

[63]  Mário Serafim Nunes,et al.  A scheduling algorithm for QoS support in IEEE802.11 networks , 2003, IEEE Wirel. Commun..

[64]  Xin Wang,et al.  Resource Allocation for Wireless Multiuser OFDM Networks , 2011, IEEE Transactions on Information Theory.

[65]  Leandros Tassiulas,et al.  Dynamic server allocation to parallel queues with randomly varying connectivity , 1993, IEEE Trans. Inf. Theory.

[66]  R. Srikant,et al.  Resource Allocation in Multi-hop Wireless Networks , 2006, 2006 International Zurich Seminar on Communications.

[67]  Mei-Ling Shyu,et al.  An Optimized Scheduling Scheme to Provide Quality of Service in 802.11e Wireless LAN , 2009, 2009 11th IEEE International Symposium on Multimedia.