On pinning impulsive control of complex dynamical networks

This paper aims at further investigating the pinning impulsive control of complex dynamical networks. In detail, we introduce a novel approach for analyzing the synchronization stability of complex networks with impulsive signals. Moreover, we prove that one random selective impulsive controller can always pin a directed strongly connected complex network to its homogeneous solution under suitable coupling strength and impulsive signal. A simple example is then given to validate the above theoretical results.

[1]  Xinghuo Yu,et al.  On the cluster consensus of discrete-time multi-agent systems , 2011, Syst. Control. Lett..

[2]  Xiang Li,et al.  Global stabilization of complex networks with digraph topologies via a local pinning algorithm , 2010, Autom..

[3]  M. Cross,et al.  Pinning control of spatiotemporal chaos , 1997, chao-dyn/9705001.

[4]  Paul Erdös,et al.  On random graphs, I , 1959 .

[5]  Qidi Wu,et al.  Less conservative conditions for asymptotic stability of impulsive control systems , 2003, IEEE Trans. Autom. Control..

[6]  Daoyi Xu,et al.  Stability Analysis and Design of Impulsive Control Systems With Time Delay , 2007, IEEE Transactions on Automatic Control.

[7]  孙文,et al.  Outer Synchronization of Complex Networks by Impulse , 2011 .

[8]  L. Chua,et al.  Synchronization in an array of linearly coupled dynamical systems , 1995 .

[9]  Wenwu Yu,et al.  On pinning synchronization of complex dynamical networks , 2009, Autom..

[10]  F. Garofalo,et al.  Pinning-controllability of complex networks , 2007, cond-mat/0701073.

[11]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[12]  Jin Zhou,et al.  Synchronization in complex delayed dynamical networks with impulsive effects , 2007 .

[13]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[14]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[15]  T. Carroll,et al.  MASTER STABILITY FUNCTIONS FOR SYNCHRONIZED COUPLED SYSTEMS , 1999 .

[16]  Zhongxin Liu,et al.  Pinning control of weighted general complex dynamical networks with time delay , 2007 .

[17]  Xinzhi Liu,et al.  Robust impulsive synchronization of uncertain dynamical networks , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  Guanrong Chen,et al.  A time-varying complex dynamical network model and its controlled synchronization criteria , 2005, IEEE Transactions on Automatic Control.

[19]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[20]  Tao Yang,et al.  Impulsive control , 1999, IEEE Trans. Autom. Control..

[21]  S. Strogatz Exploring complex networks , 2001, Nature.

[22]  Daizhan Cheng,et al.  Characterizing the synchronizability of small-world dynamical networks , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[23]  Jinde Cao,et al.  A unified synchronization criterion for impulsive dynamical networks , 2010, Autom..

[24]  Guanrong Chen,et al.  A time-varying complex dynamical network model and its controlled synchronization criteria , 2004, IEEE Trans. Autom. Control..

[25]  Yang Tao,et al.  Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication , 1997 .

[26]  Ji Xiang,et al.  Analysis of Pinning-Controlled Networks: A Renormalization Approach , 2009, IEEE Transactions on Automatic Control.

[27]  Jin Zhou,et al.  Pinning Complex Delayed Dynamical Networks by a Single Impulsive Controller , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[28]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[29]  Xiang Li,et al.  Control and Flocking of Networked Systems via Pinning , 2010, IEEE Circuits and Systems Magazine.

[30]  Tianping Chen,et al.  New approach to synchronization analysis of linearly coupled ordinary differential systems , 2006 .

[31]  Maciej Ogorzalek,et al.  Global relative parameter sensitivities of the feed-forward loops in genetic networks , 2012, Neurocomputing.

[32]  Guanrong Chen,et al.  Pinning control of scale-free dynamical networks , 2002 .

[33]  Gang Feng,et al.  Synchronization of Complex Dynamical Networks With Time-Varying Delays Via Impulsive Distributed Control , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[34]  Junan Lu,et al.  Adaptive synchronization of an uncertain complex dynamical network , 2006, IEEE Transactions on Automatic Control.

[35]  Shihua Chen,et al.  Synchronization of impulsively coupled complex systems with delay. , 2011, Chaos.

[36]  C. Wu Synchronization in networks of nonlinear dynamical systems coupled via a directed graph , 2005 .

[37]  Chun-Mei Yang,et al.  Impulsive control of Lorenz system , 1997 .