Regularized Simultaneous Forward–Backward Greedy Algorithm for Sparse Unmixing of Hyperspectral Data

Sparse unmixing assumes that each observed signature of a hyperspectral image is a linear combination of only a few spectra (endmembers) in an available spectral library. It then estimates the fractional abundances of these endmembers in the scene. The sparse unmixing problem still remains a great difficulty due to the usually high correlation of the spectral library. Under such circumstances, this paper presents a novel algorithm termed as the regularized simultaneous forward-backward greedy algorithm (RSFoBa) for sparse unmixing of hyperspectral data. The RSFoBa has low computational complexity of getting an approximate solution for the l0 problem directly and can exploit the joint sparsity among all the pixels in the hyperspectral data. In addition, the combination of the forward greedy step and the backward greedy step makes the RSFoBa more stable and less likely to be trapped into the local optimum than the conventional greedy algorithms. Furthermore, when updating the solution in each iteration, a regularizer that enforces the spatial-contextual coherence within the hyperspectral image is considered to make the algorithm more effective. We also show that the sublibrary obtained by the RSFoBa can serve as input for any other sparse unmixing algorithms to make them more accurate and time efficient. Experimental results on both synthetic and real data demonstrate the effectiveness of the proposed algorithm.

[1]  D. C. Howell Statistical Methods for Psychology , 1987 .

[2]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[3]  Antonio J. Plaza,et al.  Collaborative Sparse Regression for Hyperspectral Unmixing , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Antonio J. Plaza,et al.  Sparse Unmixing of Hyperspectral Data , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Aggelos K. Katsaggelos,et al.  Bayesian Compressive Sensing Using Laplace Priors , 2010, IEEE Transactions on Image Processing.

[6]  Thomas L. Ainsworth,et al.  Exploiting manifold geometry in hyperspectral imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[7]  José M. Bioucas-Dias,et al.  Alternating direction algorithms for constrained sparse regression: Application to hyperspectral unmixing , 2010, 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[8]  John B. Greer,et al.  Sparse Demixing of Hyperspectral Images , 2012, IEEE Transactions on Image Processing.

[9]  Lawrence Carin,et al.  Bayesian Compressive Sensing , 2008, IEEE Transactions on Signal Processing.

[10]  Chein-I Chang,et al.  Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[11]  Antony Jameson,et al.  SOLUTION OF EQUATION AX + XB = C BY INVERSION OF AN M × M OR N × N MATRIX ∗ , 1968 .

[12]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[13]  Stephen J. Wright,et al.  Computational Methods for Sparse Solution of Linear Inverse Problems , 2010, Proceedings of the IEEE.

[14]  Antony Jameson,et al.  Solution of the Equation $AX + XB = C$ by Inversion of an $M \times M$ or $N \times N$ Matrix , 1968 .

[15]  Chein-I Chang,et al.  Estimation of number of spectrally distinct signal sources in hyperspectral imagery , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Gregory Asner,et al.  Endmember bundles: a new approach to incorporating endmember variability into spectral mixture analysis , 2000, IEEE Trans. Geosci. Remote. Sens..

[17]  José M. Bioucas-Dias,et al.  An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems , 2009, IEEE Transactions on Image Processing.

[18]  A F Goetz,et al.  Imaging Spectrometry for Earth Remote Sensing , 1985, Science.

[19]  John F. Mustard,et al.  Spectral unmixing , 2002, IEEE Signal Process. Mag..

[20]  Johannes R. Sveinsson,et al.  Classification of hyperspectral data from urban areas based on extended morphological profiles , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Derek M. Rogge,et al.  Iterative Spectral Unmixing for Optimizing Per-Pixel Endmember Sets , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Andreas T. Ernst,et al.  ICE: a statistical approach to identifying endmembers in hyperspectral images , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Yu Hen Hu,et al.  Optimal linear spectral unmixing , 1999, IEEE Trans. Geosci. Remote. Sens..

[24]  Mario Winter,et al.  N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data , 1999, Optics & Photonics.

[25]  Ernie Esser,et al.  Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman , 2009 .

[26]  A. Plaza,et al.  H-COMP: a tool for quantitative and comparative analysis of endmember identification algorithms , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[27]  S. J. Reeves An efficient implementation of the backward greedy algorithm for sparse signal reconstruction , 1999, IEEE Signal Processing Letters.

[28]  Joel A. Tropp,et al.  ALGORITHMS FOR SIMULTANEOUS SPARSE APPROXIMATION , 2006 .

[29]  Tong Zhang,et al.  Adaptive Forward-Backward Greedy Algorithm for Learning Sparse Representations , 2011, IEEE Transactions on Information Theory.

[30]  Antonio J. Plaza,et al.  Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[31]  David A. Landgrebe,et al.  Hyperspectral image data analysis , 2002, IEEE Signal Process. Mag..

[32]  J. Boardman Automating spectral unmixing of AVIRIS data using convex geometry concepts , 1993 .

[33]  S. J. Sutley,et al.  USGS Digital Spectral Library splib06a , 2007 .

[34]  Jin Chen,et al.  A Quantitative Analysis of Virtual Endmembers' Increased Impact on the Collinearity Effect in Spectral Unmixing , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[35]  Stephen J. Wright,et al.  A greedy forward-backward algorithm for atomic norm constrained minimization , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[36]  Trac D. Tran,et al.  Hyperspectral Image Classification Using Dictionary-Based Sparse Representation , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Yoram Bresler,et al.  On the Optimality of the Backward Greedy Algorithm for the Subset Selection Problem , 2000, SIAM J. Matrix Anal. Appl..

[38]  Konstantinos Koutroumbas,et al.  A Novel Hierarchical Bayesian Approach for Sparse Semisupervised Hyperspectral Unmixing , 2012, IEEE Transactions on Signal Processing.

[39]  S. J. Sutley,et al.  Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems , 2003 .

[40]  Antonio J. Plaza,et al.  Dictionary pruning in sparse unmixing of hyperspectral data , 2012, 2012 4th Workshop on Hyperspectral Image and Signal Processing (WHISPERS).

[41]  Yonina C. Eldar,et al.  Average Case Analysis of Multichannel Sparse Recovery Using Convex Relaxation , 2009, IEEE Transactions on Information Theory.

[42]  José M. Bioucas-Dias,et al.  Vertex component analysis: a fast algorithm to unmix hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[43]  D. W. Zimmerman Teacher’s Corner: A Note on Interpretation of the Paired-Samples t Test , 1997 .

[44]  Olgica Milenkovic,et al.  Subspace Pursuit for Compressive Sensing Signal Reconstruction , 2008, IEEE Transactions on Information Theory.

[45]  Maria Petrou,et al.  Confidence in linear spectral unmixing of single pixels , 1999, IEEE Trans. Geosci. Remote. Sens..

[46]  Peg Shippert Why Use Hyperspectral Imagery , 2004 .

[47]  Jie Chen,et al.  Theoretical Results on Sparse Representations of Multiple-Measurement Vectors , 2006, IEEE Transactions on Signal Processing.

[48]  V. P. Pauca,et al.  Nonnegative matrix factorization for spectral data analysis , 2006 .

[49]  Vishal M. Patel Sparse and Redundant Representations for Inverse Problems and Recognition , 2010 .

[50]  Paul Geladi,et al.  Hyperspectral imaging: calibration problems and solutions , 2004 .

[51]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[52]  Yan Zhang,et al.  Sparse Hyperspectral Unmixing Based on Constrained lp - l2 Optimization , 2013, IEEE Geoscience and Remote Sensing Letters.

[53]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[54]  Jun Zhou,et al.  Hyperspectral Unmixing via $L_{1/2}$ Sparsity-Constrained Nonnegative Matrix Factorization , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[55]  José M. Bioucas-Dias,et al.  Hyperspectral Subspace Identification , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[56]  Xuelong Li,et al.  Manifold Regularized Sparse NMF for Hyperspectral Unmixing , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[57]  Michael K. Ng,et al.  Deblurring and Sparse Unmixing for Hyperspectral Images , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[58]  José M. Bioucas-Dias,et al.  Minimum Volume Simplex Analysis: A Fast Algorithm to Unmix Hyperspectral Data , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[59]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[60]  Joel A. Tropp,et al.  Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit , 2006, Signal Process..

[61]  Guillermo Sapiro,et al.  Learning Discriminative Sparse Representations for Modeling, Source Separation, and Mapping of Hyperspectral Imagery , 2011, IEEE Transactions on Geoscience and Remote Sensing.