Evolutionary semi-supervised fuzzy clustering

For learning classifier from labeled and unlabeled data, this paper proposes an evolutionary semi-supervised fuzzy clustering algorithm. Class labels information provided by labeled data is used to guide the evolution process of each fuzzy partition on unlabeled data, which plays the role of chromosome. The fitness of each chromosome is evaluated with a combination of fuzzy within cluster variance of unlabeled data and misclassification error of labeled data. The structure of the clusters obtained can be used to classify a future new pattern. The performance of the proposed approach is evaluated using two benchmark data sets. Experimental results indicate that the proposed approach can improve classification accuracy significantly, compared to classifier trained with a small number of labeled data only. Also, it outperforms a similar approach SSFCM.

[1]  Lawrence J. Fogel,et al.  Intelligence Through Simulated Evolution: Forty Years of Evolutionary Programming , 1999 .

[2]  Witold Pedrycz,et al.  Fuzzy clustering with partial supervision , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[3]  Mohammed Benkhalifa,et al.  Integrating WordNet knowledge to supplement training data in semi‐supervised agglomerative hierarchical clustering for text categorization , 2001, Int. J. Intell. Syst..

[4]  James C. Bezdek,et al.  Optimization of clustering criteria by reformulation , 1995, IEEE Trans. Fuzzy Syst..

[5]  Avrim Blum,et al.  The Bottleneck , 2021, Monopsony Capitalism.

[6]  Ayhan Demiriz,et al.  A Genetic Algorithm Approach for Semi-Supervised Clustering , 2002 .

[7]  James C. Bezdek,et al.  Partially supervised clustering for image segmentation , 1996, Pattern Recognit..

[8]  Fabrizio Sebastiani,et al.  Machine learning in automated text categorization , 2001, CSUR.

[9]  Yiming Yang,et al.  A re-examination of text categorization methods , 1999, SIGIR '99.

[10]  Theodore C. Belding,et al.  The Distributed Genetic Algorithm Revisited , 1995, ICGA.

[11]  Thorsten Joachims,et al.  Transductive Inference for Text Classification using Support Vector Machines , 1999, ICML.

[12]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[13]  Thorsten Joachims,et al.  Text Categorization with Support Vector Machines: Learning with Many Relevant Features , 1998, ECML.

[14]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[15]  Ken Lang,et al.  NewsWeeder: Learning to Filter Netnews , 1995, ICML.

[16]  Tom M. Mitchell,et al.  Learning to construct knowledge bases from the World Wide Web , 2000, Artif. Intell..

[17]  Mohammed Benkhalifa,et al.  Integrating External Knowledge to Supplement Training Data in Semi-Supervised Learning for Text Categorization , 2004, Information Retrieval.

[18]  Vittorio Castelli,et al.  On the exponential value of labeled samples , 1995, Pattern Recognit. Lett..

[19]  Sebastian Thrun,et al.  Text Classification from Labeled and Unlabeled Documents using EM , 2000, Machine Learning.

[20]  Isak Gath,et al.  Unsupervised Optimal Fuzzy Clustering , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  D. Fogel ASYMPTOTIC CONVERGENCE PROPERTIES OF GENETIC ALGORITHMS AND EVOLUTIONARY PROGRAMMING: ANALYSIS AND EXPERIMENTS , 1994 .

[22]  Witold Pedrycz,et al.  Algorithms of fuzzy clustering with partial supervision , 1985, Pattern Recognit. Lett..

[23]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[24]  Ayhan Demiriz,et al.  Semi-Supervised Support Vector Machines , 1998, NIPS.

[25]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[26]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[27]  Donald Gustafson,et al.  Fuzzy clustering with a fuzzy covariance matrix , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[28]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.