The Pathways of Light Measured in Fundus Reflectometry

We measured the spectral reflectance of the fovea of ten normal subjects in four conditions, i.e. under dark-adapted and bleached conditions and at two retinal angles of incidence. The objective was to study optical pathways through the photoreceptor layer, resulting in a model that simultaneously explains spectral, directional and bleaching properties of the fovea. On theoretical grounds, we propose that small reflections from the stack of discs in the cone outer segments are the origin of the directional component of foveal reflection. Non-directional reflection occurs at the inner limiting membrane and at all layers posterior to the outer segments. With four reflectance spectra as input, the model allows determination of the density of the photostable absorbers, the lens, macular pigment, melanin and blood. Because of the simplified modeling of the layers posterior to the photoreceptor layer, the values for the density of melanin and blood are not necessarily comparable to physiological data. The density of the visual pigment calculated with this model is consistent with psychophysical data, with estimates for the ten subjects ranging from 0.41 to 0.80. The long wavelength sensitive cone fraction is calculated as 0.56.

[1]  H. Berg Cold Spring Harbor Symposia on Quantitative Biology.: Vol. LII. Evolution of Catalytic Functions. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1987, ISBN 0-87969-054-2, xix + 955 pp., US $150.00. , 1989 .

[2]  J. Fujimoto,et al.  Optical coherence tomography of the human retina. , 1995, Archives of ophthalmology.

[3]  J. Pokorny,et al.  Psychophysical estimates of optical density in human cones. , 1973, Vision research.

[4]  J. Duker,et al.  Imaging of macular diseases with optical coherence tomography. , 1995, Ophthalmology.

[5]  D. van Norren,et al.  Intensity and polarization of light scattered at small angles from the human fovea. , 1986, Vision research.

[6]  W. Rushton,et al.  Bleaching and regeneration of cone pigments in man. , 1968, Vision research.

[7]  A Taflove,et al.  Electrodynamics of visible-light interactions with the vertebrate retinal rod. , 1993, Optics letters.

[8]  C K Hitzenberger,et al.  Optical measurement of the axial eye length by laser Doppler interferometry. , 1991, Investigative ophthalmology & visual science.

[9]  Charman Wn,et al.  Reflection of plane-polarized light by the retina. , 1980 .

[10]  D. Van Norren,et al.  Spectral reflectance of the human eye , 1986, Vision Research.

[11]  P E King-Smith,et al.  The optical density of erythrolabe determined by retinal densitometry using the self‐screening method , 1973, The Journal of physiology.

[12]  G. M. Hope,et al.  Directional sensitivity of the foveal and parafoveal retina. , 1973, Investigative ophthalmology.

[13]  Joel Pokorny,et al.  Densitometric measurement of human cone photopigment kinetics , 1983, Vision Research.

[14]  R A Weale,et al.  Polarized light and the human fundus oculi , 1966, The Journal of physiology.

[15]  D. Norren,et al.  A continuously recording retinal densitometer , 1981, Vision Research.

[16]  W A RUSHTON,et al.  Stray light and the measurement of mixed pigments in the retina , 1965, The Journal of physiology.

[17]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[18]  W. Rushton,et al.  Stiles—Crawford effect and the bleaching of cone pigments , 1971, The Journal of physiology.

[19]  Rainer Röhler,et al.  Zur messung der modulationsübertragungsfunktion des lebenden menschlichen auges im reflektierten licht , 1969 .

[20]  A. Elsner,et al.  Color matching at high illuminances: photopigment optical density and pupil entry. , 1993, Journal of the Optical Society of America. A, Optics and image science.

[21]  Richard A. Bone,et al.  Optical density spectra of the macular pigmentin vivo andin vitro , 1992, Vision Research.

[22]  F. Delori,et al.  A reflectometric technique for assessing photorecelptor alignment , 1995, Vision Research.

[23]  J. J. Vos,et al.  On the derivation of the foveal receptor primaries. , 1971, Vision research.

[24]  G. V. van Blokland,et al.  Directionality and alignment of the foveal receptors, assessed with light scattered from the human fundus in vivo. , 1986, Vision research.

[25]  J. Pokorny,et al.  Full-spectrum cone sensitivity functions for X-chromosome-linked anomalous trichromats. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[26]  J. Gorrand,et al.  Directional effects of the retina appearing in the aerial image , 1985 .

[27]  J. J. Vos,et al.  Spectral transmission of the human ocular media. , 1974, Vision research.

[28]  M. A. Bouman,et al.  Relation between directional sensitivity and spectral response curves in human cone vision. , 1960, Journal of the Optical Society of America.

[29]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .

[30]  S. S. Miller Psychophysical estimates of visual pigment densities in red‐green dichromats , 1972, The Journal of physiology.

[31]  D. Baylor,et al.  Cone excitations and color vision. , 1990, Cold Spring Harbor symposia on quantitative biology.

[32]  Light capture by human cones. , 1989, The Journal of physiology.

[33]  R. Knighton,et al.  Quantitative reflectometry of the ocular fundus , 1995 .

[34]  R. Weale,et al.  Analysis of Foveal Densitometry , 1965, Nature.

[35]  K. Baker,et al.  Optical properties of the clearest natural waters (200-800 nm). , 1981, Applied optics.

[36]  M. Shahidi,et al.  Topography of the retinal thickness in normal subjects. , 1990, Ophthalmology.

[37]  A. Milam,et al.  Distribution and morphology of human cone photoreceptors stained with anti‐blue opsin , 1991, The Journal of comparative neurology.

[38]  D. Norren,et al.  Retinal densitometer with the size of a fundus camera , 1989, Vision Research.

[39]  P E King-Smith,et al.  The optical density of erythrolabe determined by a new method , 1973, The Journal of physiology.

[40]  V C Smith,et al.  Effect of field size on red--green color mixture equations. , 1976, Journal of the Optical Society of America.

[41]  F. Delori,et al.  Spectral reflectance of the human ocular fundus. , 1989, Applied optics.

[42]  G. Blokland,et al.  Directionality and alignment of the foveal receptors, assessed with light scattered from the human fundusin vivo , 1986, Vision Research.

[43]  A. Hendrickson,et al.  Photoreceptor topography of the retina in the adult pigtail macaque (Macaca nemestrina) , 1989, The Journal of comparative neurology.

[44]  J. J. Vos,et al.  The effect of lens density on the Stiles-Crawford effect , 1975, Vision Research.

[45]  R. S. Longhurst Geometrical and Physical Optics , 1967 .

[46]  J. van de Kraats,et al.  Retinal densitometer with the size of a fundus camera. , 1989, Vision research.

[47]  W. Stiles,et al.  Luminous Efficiency of Rays entering the Eye Pupil at Different Points , 1937, Nature.

[48]  George Robert Jessop VHF-UHF Manual , 1976 .

[49]  C. M. Cicerone,et al.  The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis , 1989, Vision Research.

[50]  V C Smith,et al.  Aging of the human lens. , 1987, Applied optics.

[51]  A. Snyder,et al.  The Stiles-Crawford effect--explanation and consequences. , 1973, Vision research.

[52]  F. Campbell,et al.  Optical quality of the human eye , 1966, The Journal of physiology.