Neuro-fuzzy self-tuning of PID control for semiglobal exponential tracking of robot arms

Graphical abstractDisplay Omitted HighlightsSelf-tuning PID control algorithm based on a single feedback gain using a neuro-fuzzy scheme.Proof stability to demonstrate semiglobal exponential tracking.We claim that our proposal stands for the first one that enforces and proves semiglobal exponential tracking for robot arms using model-free self-tuning PID. The PID controller with constant feedback gains has withstood as the preferred choice for control of linear plants or linearized plants, and under certain conditions for non-linear ones, where the control of robotic arms excels. In this paper a model-free self-tuning PID controller is proposed for tracking tasks. The key idea is to exploit the passivity-based formulation for robotic arms in order to shape the damping injection to enforce dissipativity and to guarantee semiglobal exponential convergence in the sense of Lyapunov. It is shown that a neuro-fuzzy network can be used to tune dissipation rate gain through a self-tuning policy of a single gain. Experimental studies are presented to confirm the viability of the proposed approach.

[1]  Yunhui Liu,et al.  Dynamic sliding PID control for tracking of robot manipulators: theory and experiments , 2003, IEEE Trans. Robotics Autom..

[2]  Hamid D. Taghirad,et al.  A novel hybrid Fuzzy-PID controller for tracking control of robot manipulators , 2009, 2008 IEEE International Conference on Robotics and Biomimetics.

[3]  Rafael Kelly,et al.  Stable computed-torque control of robot manipulators via fuzzy self-tuning , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[4]  Shinichi Hirai,et al.  Dynamic self-tuning PD control for tracking of robot manipulators , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[5]  Rafael Kelly,et al.  Semiglobal stability of saturated linear PID control for robot manipulators , 2003, Autom..

[6]  Krzysztof Pietrusewicz,et al.  A method for improving the robustness of PID control , 2005, IEEE Transactions on Industrial Electronics.

[7]  Rafael Kelly,et al.  A class of nonlinear PID global regulators for robot manipulators , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[8]  Jorge Armendariz,et al.  Force feedback controller based on fuzzy-rules emulated networks and Hertzian contact with ultrasound , 2012 .

[9]  V Mummadi,et al.  Design of Robust Digital PID Controller for H-Bridge Soft-Switching Boost Converter , 2011, IEEE Transactions on Industrial Electronics.

[10]  R. Kelly Global positioning of robot manipulators via PD control plus a class of nonlinear integral actions , 1998, IEEE Trans. Autom. Control..

[11]  Jing-Chung Shen,et al.  Fuzzy neural networks for tuning PID controller for plants with underdamped responses , 2001, IEEE Trans. Fuzzy Syst..

[12]  Frank L. Lewis,et al.  Multilayer neural-net robot controller with guaranteed tracking performance , 1996, IEEE Trans. Neural Networks.

[13]  Masaharu Mizumoto,et al.  PID type fuzzy controller and parameters adaptive method , 1996, Fuzzy Sets Syst..

[14]  Zoe Doulgeri,et al.  Regressor-free robot joint position tracking with prescribed performance guarantees , 2011, 2011 IEEE International Conference on Robotics and Biomimetics.

[15]  Yun Li,et al.  PID control system analysis, design, and technology , 2005, IEEE Transactions on Control Systems Technology.

[16]  Frank L. Lewis,et al.  Control of Robot Manipulators , 1993 .

[17]  S. Uatrongjit,et al.  Adaptive controller with fuzzy rules emulated structure and its applications , 2005, Eng. Appl. Artif. Intell..

[18]  R.E. Brown,et al.  PID self-tuning controller for aluminium rolling mill , 1990, Conference Record of the 1990 IEEE Industry Applications Society Annual Meeting.

[19]  Peter Kwong-Shun Tam,et al.  Lyapunov-function-based design of fuzzy logic controllers and its application on combining controllers , 1998, IEEE Trans. Ind. Electron..

[20]  Suguru Arimoto,et al.  Is a local linear PD feedback control law effective for trajectory tracking of robot motion? , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[21]  Ming Liu,et al.  An adaptive fuzzy approach for robot manipulator tracking , 1999, Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA'99 (Cat. No.99EX375).

[22]  An-Chyau Huang,et al.  Adaptive Control of Robot Manipulators: A Unified Regressor-Free Approach , 2010 .

[23]  Jiangjiang Wang,et al.  Study of Neural Network PID Control in Variable-frequency Air-conditioning System , 2007, 2007 IEEE International Conference on Control and Automation.

[24]  Víctor Santibáñez,et al.  Fuzzy Self-Tuning PID Semiglobal Regulator for Robot Manipulators , 2012, IEEE Transactions on Industrial Electronics.

[25]  C. Treesatayapun Fuzzy rules emulated network and its application on nonlinear control systems , 2008, Appl. Soft Comput..

[26]  J. Slotine,et al.  On the Adaptive Control of Robot Manipulators , 1987 .

[27]  Henk Nijmeijer,et al.  Global asymptotic stability of robot manipulators with linear PID and PI2D control , 2000 .

[28]  Kim-Fung Man,et al.  An optimal fuzzy PID controller , 2001, IEEE Trans. Ind. Electron..

[29]  Rajani K. Mudi,et al.  A robust self-tuning scheme for PI- and PD-type fuzzy controllers , 1999, IEEE Trans. Fuzzy Syst..

[30]  Shinichi Hirai,et al.  Regressor-free tracking of robots with self-tuning PD-like control , 2013, 2013 IEEE International Conference on Robotics and Automation.

[31]  Kiam Heong Ang,et al.  PID control system analysis and design , 2006, IEEE Control Systems.

[32]  Yongming Li,et al.  Adaptive fuzzy output feedback control for a single-link flexible robot manipulator driven DC motor via backstepping ☆ , 2013 .

[33]  H. Nijmeijer,et al.  Bounded output feedback tracking control of fully actuated Euler-Lagrange systems , 1998 .

[34]  Masayoshi Tomizuka,et al.  Fuzzy gain scheduling of PID controllers , 1993, IEEE Trans. Syst. Man Cybern..

[35]  Zhiqiang Gao,et al.  A wavelet-based multiresolution PID controller , 2005, IEEE Transactions on Industry Applications.

[36]  Shuang Cong,et al.  PID-Like Neural Network Nonlinear Adaptive Control for Uncertain Multivariable Motion Control Systems , 2009, IEEE Transactions on Industrial Electronics.

[37]  Suguru Arimoto,et al.  Stability and robustness of PID feedback control for robot manipulators of sensory capability , 1984 .

[38]  Wen Yu,et al.  Neural PID Control of Robot Manipulators With Application to an Upper Limb Exoskeleton , 2013, IEEE Transactions on Cybernetics.

[39]  Meng Joo Er,et al.  Adaptive control of robot manipulators using fuzzy neural networks , 2001, IEEE Trans. Ind. Electron..

[40]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..