Symmetry and dependence properties within a semiparametric family of bivariate copulas

In this paper, we study a semiparametric family of bivariate copulas. The family is generated by a univariate function, determining the symmetry (radial symmetry, joint symmetry) and dependence property (quadrant dependence, total positivity, \ldots ) of the copulas. We provide bounds on different measures of association (such as Kendall's Tau, Spearman's Rho) for this family and several choices of generating functions for which these bounds can be reached.

[1]  Roger B. Nelsen,et al.  Copulas and Association , 1991 .

[2]  K. Stromberg Introduction to classical real analysis , 1981 .

[3]  T. Ferguson A class of symmetric bivariate uniform distributions , 1995 .

[4]  Min Xie,et al.  A new family of positive quadrant dependent bivariate distributions , 2000 .

[5]  B. Schweizer,et al.  On Nonparametric Measures of Dependence for Random Variables , 1981 .

[6]  S. Kotz,et al.  Modifications of the Farlie-Gumbel-Morgenstern distributions. A tough hill to climb , 1999 .

[7]  E. Lehmann Some Concepts of Dependence , 1966 .

[8]  S. Kotz,et al.  Correlation Structure in Iterated Farlie-Gumbel-Morgenstern Distributions. , 1984 .

[9]  Some concepts of bivariate symmetry , 1993 .

[10]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[11]  Christian Genest,et al.  Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données , 1986 .

[12]  R. Nelsen,et al.  Bivariate copulas with cubic sections , 1997 .

[13]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[14]  J. -. Rodríguez-Lallena,et al.  Bivariate copulas with quadratic sections , 1995 .

[15]  R. Tibshirani,et al.  Monographs on statistics and applied probability , 1990 .

[16]  D. J. G. Farlie,et al.  The performance of some correlation coefficients for a general bivariate distribution , 1960 .

[17]  Satishs Iyengar,et al.  Multivariate Models and Dependence Concepts , 1998 .