Synchronization of chaos in RCL-shunted Josephson junction using a simple adaptive controller

In this paper, a simple adaptive control is proposed for the synchronization of chaotic dynamics of resistive–capacitive–inductive-shunted Josephson junctions (RCLSJ). The synchronization problem is investigated based on a drive–response system configuration consisting of two identical RCLSJ with and without identical system parameters. In addition, the synchronization when the system parameters are unknown is considered based on adaptive parameter control estimation. Sufficient conditions for global asymptotic synchronization are given and numerical simulations are employed to demonstrate the efficiency of the adaptive control scheme. In the presence of noise, we also show that the synchronization is robust and discuss the implication of our adaptive control technique in rapid single flux quantum (RSFQ) devices.

[1]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[2]  S. Boccaletti,et al.  The control of chaos: theory and applications , 2000 .

[3]  Rongwei Guo A simple adaptive controller for chaos and hyperchaos synchronization , 2008 .

[4]  Uchechukwu E. Vincent,et al.  Control and synchronization of chaos in RCL-shunted Josephson junction using backstepping design , 2008 .

[5]  Guanrong Chen,et al.  Switching manifold approach to chaos synchronization , 1999 .

[6]  Carroll,et al.  Experimental and Numerical Evidence for Riddled Basins in Coupled Chaotic Systems. , 1994, Physical review letters.

[7]  F. T. Arecchi,et al.  Adaptive strategies for recognition, noise filtering, control, synchronization and targeting of chaos. , 1997, Chaos.

[8]  Yu. A. Pashkin,et al.  Quantum oscillations in two coupled charge qubits , 2002, Nature.

[9]  Michael Tinkham,et al.  Introduction to Superconductivity , 1975 .

[10]  Qingdu Li,et al.  A computer-assisted proof of chaos in Josephson junctions , 2006 .

[11]  Matthias Steffen,et al.  Simultaneous State Measurement of Coupled Josephson Phase Qubits , 2005, Science.

[12]  Jinde Cao,et al.  Adaptive synchronization of neural networks with or without time-varying delay. , 2006, Chaos.

[13]  Whan Cb,et al.  Complex dynamical behavior in RCL-shunted Josephson tunnel junctions. , 1996 .

[14]  A. Zagoskin,et al.  Tunable coupling of superconducting qubits. , 2002, Physical review letters.

[15]  Er-Wei Bai,et al.  Chaos synchronization in RCL-shunted Josephson junction via active control , 2007 .

[16]  S. Bowong Stability analysis for the synchronization of chaotic systems with different order: application to secure communications , 2004 .

[17]  J. E. Mooij,et al.  Parametric coupling for superconducting qubits , 2006 .

[18]  Syamal K. Dana,et al.  Chaotic dynamics in Josephson junction , 2001 .

[19]  Roberto Ramos,et al.  Entangled Macroscopic Quantum States in Two Superconducting Qubits , 2003, Science.

[20]  Xiaofeng Liao,et al.  Impulsive synchronization of chaotic systems. , 2005, Chaos.

[21]  Lee-Ming Cheng,et al.  Synchronization of spatiotemporal chaos with positive conditional Lyapunov exponents , 1997 .

[22]  Kazuo Tanaka,et al.  A unified approach to controlling chaos via an LMI-based fuzzy control system design , 1998 .

[23]  M. G. Forrester,et al.  Effect of inductance in externally shunted Josephson tunnel junctions , 1995 .

[24]  P. K. Roy,et al.  Taming of chaos and synchronisation in RCL-shunted Josephson junctions by external forcing , 2006 .

[25]  Protocol for Universal Gates in Optimally Biased Superconducting Qubits , 2004, quant-ph/0412009.

[26]  A. B. Cawthorne,et al.  Complex dynamics of resistively and inductively shunted Josephson junctions , 1998 .

[27]  Corron,et al.  Controlling chaos with simple limiters , 2000, Physical review letters.

[28]  Yang Tao,et al.  Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication , 1997 .

[29]  J García-Ojalvo,et al.  Spatiotemporal communication with synchronized optical chaos. , 2000, Physical review letters.

[30]  Carroll,et al.  Desynchronization by periodic orbits. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  Franco Nori,et al.  Scalable quantum computing with Josephson charge qubits. , 2002, Physical review letters.

[32]  Rapid single flux quantum devices with selective dissipation for quantum information processing , 2005, cond-mat/0510189.

[33]  Uchechukwu E. Vincent,et al.  Synchronization of Rikitake chaotic attractor using active control , 2005 .

[34]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[35]  Lakshmanan,et al.  Drive-response scenario of chaos synchronization in identical nonlinear systems. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  Xiao Fan Wang Slower speed and stronger coupling: adaptive mechanisms of chaos synchronization. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  K. B. Whaley,et al.  Entangling flux qubits with a bipolar dynamic inductance , 2004, quant-ph/0406049.