A Sum-Utility Maximization Approach for Fairness Resource Allocation in Wireless Powered Body Area Networks

Wireless body area networks (WBANs) are essential for monitoring physiological signals of the human body, but the lifetime of WBANs is limited by battery longevity and it is not convenient or feasible for replacing the batteries of the sensors. The newly emerged energy-harvesting technology provides the potential to break the battery limitation of WBANs. However, the radio resource of a WBAN should be carefully scheduled for the wireless power transfer links and wireless information transmission links; otherwise, severely unfair resource allocation could be incurred due to the difference of channel qualities of the sensors. In this paper, we propose a marginal utility theoretic method to allocate the radio resource to the on-/in-body sensors in a fair and efficient manner. Especially, we consider that the sensors are wireless powered by multiple pre-installed radio-frequency energy sources. First, the utility function for a sensor node is proposed, which can map the achievable throughput to a satisfaction level of network QoS. Then, the fairness resource allocation among the sensor nodes is modeled as a sum-utility maximization problem. By using the dual decomposition method, the optimal solution to the proposed problem can finally be solved in the closed form. In comparison with the sum-throughput maximization and common-throughput maximization methods, the simulation results show that the proposed sum-utility maximization method can bring a fair throughput allocation for the sensors with different channel conditions, and the performance loss to the sum-throughput maximization method is small, while the sum-throughput maximization method is extremely unfair.