Online Rank Elicitation for Plackett-Luce: A Dueling Bandits Approach
暂无分享,去创建一个
Eyke Hüllermeier | Balázs Szörényi | Róbert Busa-Fekete | Adil Paul | R. Busa-Fekete | E. Hüllermeier | Balázs Szörényi | Adil Paul
[1] Eyke Hüllermeier,et al. PAC Rank Elicitation through Adaptive Sampling of Stochastic Pairwise Preferences , 2014, AAAI.
[2] E. S. Pearson,et al. THE USE OF CONFIDENCE OR FIDUCIAL LIMITS ILLUSTRATED IN THE CASE OF THE BINOMIAL , 1934 .
[3] David C. Parkes,et al. Generalized Method-of-Moments for Rank Aggregation , 2013, NIPS.
[4] Sébastien Bubeck,et al. Multiple Identifications in Multi-Armed Bandits , 2012, ICML.
[5] Mark Braverman,et al. Sorting from Noisy Information , 2009, ArXiv.
[6] Eyke Hüllermeier,et al. Preference-Based Rank Elicitation using Statistical Models: The Case of Mallows , 2014, ICML.
[7] Thorsten Joachims,et al. The K-armed Dueling Bandits Problem , 2012, COLT.
[8] D. Hunter. MM algorithms for generalized Bradley-Terry models , 2003 .
[9] R. Luce,et al. Individual Choice Behavior: A Theoretical Analysis. , 1960 .
[10] Raphaël Féraud,et al. Generic Exploration and K-armed Voting Bandits , 2013, ICML.
[11] R. Duncan Luce,et al. Individual Choice Behavior: A Theoretical Analysis , 1979 .
[12] Thorsten Joachims,et al. Beat the Mean Bandit , 2011, ICML.
[13] Alessandro Lazaric,et al. Multi-Bandit Best Arm Identification , 2011, NIPS.
[14] C. L. Mallows. NON-NULL RANKING MODELS. I , 1957 .
[15] M. de Rijke,et al. Relative Upper Confidence Bound for the K-Armed Dueling Bandit Problem , 2013, ICML.
[16] Shie Mannor,et al. PAC Bounds for Multi-armed Bandit and Markov Decision Processes , 2002, COLT.
[17] Eyke Hüllermeier,et al. A Survey of Preference-Based Online Learning with Bandit Algorithms , 2014, ALT.
[18] Eugene Galanter,et al. Handbook of mathematical psychology: I. , 1963 .
[19] Rémi Munos,et al. Pure Exploration in Multi-armed Bandits Problems , 2009, ALT.
[20] R. B. Hayward,et al. Large Deviations for Quicksort , 1996, J. Algorithms.
[21] J. Marden. Analyzing and Modeling Rank Data , 1996 .
[22] Eli Upfal,et al. Computing with Noisy Information , 1994, SIAM J. Comput..
[23] John Guiver,et al. Bayesian inference for Plackett-Luce ranking models , 2009, ICML '09.
[24] W. Hoeffding. Probability Inequalities for sums of Bounded Random Variables , 1963 .
[25] Arun Rajkumar,et al. A Statistical Convergence Perspective of Algorithms for Rank Aggregation from Pairwise Data , 2014, ICML.
[26] Nir Ailon,et al. Reconciling Real Scores with Binary Comparisons: A New Logistic Based Model for Ranking , 2008, NIPS.
[27] R. Plackett. The Analysis of Permutations , 1975 .
[28] Eyke Hüllermeier,et al. Top-k Selection based on Adaptive Sampling of Noisy Preferences , 2013, ICML.
[29] Mark Braverman,et al. Noisy sorting without resampling , 2007, SODA '08.