Beyond Monte Carlo: A Computational Framework for Uncertainty Propagation in Planetary Entry, Descent and Landing

Space system verification and validation require high fidelity simulations to predict system performance in presence of uncertainties in the spacecraft and environment. Bruteforce Monte Carlo (MC) simulations are overly resource-expensive for such high-dimensional nonlinear systems. A computational framework for uncertainty propagation in planetary entry, descent and landing is proposed that goes beyond traditional MC based dispersion analysis. The methodology and simulation results for this transfer operator based method are provided and compared with MC results to bring forth the computational efficacies.

[1]  N. Vinh,et al.  Hypersonic and Planetary Entry Flight Mechanics , 1980 .

[2]  M. Ehrendorfer The Liouville Equation and Its Potential Usefulness for the Prediction of Forecast Skill. Part I: Theory , 1994 .

[3]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[4]  P. Desai,et al.  Entry Dispersion Analysis for the Stardust Comet Sample Return Capsule , 1997 .

[5]  M. Mackey,et al.  Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics , 1998 .

[6]  N Desai Prasun,et al.  Six Degree-of-Freedom Entry Dispersion Analysis for the METEOR Recovery Module , 1996 .

[7]  Robert D. Braun,et al.  Mars Microprobe Entry-to-Impact Analysis , 1999 .

[8]  Petros Dellaportas,et al.  An Introduction to MCMC , 2003 .

[9]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[10]  Ashwin R. Vasavada,et al.  Selection of Four Landing Sites for the Mars Science Laboratory , 2009 .

[11]  W. Gilks Markov Chain Monte Carlo , 2005 .

[12]  William Congdon,et al.  Ablation model validation and analytical sensitivity study for the Mars Pathfinder heat shield , 1995 .

[13]  P. Comba,et al.  Part I. Theory , 2007 .

[14]  R. Braun,et al.  Mars Pathfinder atmospheric entry - Trajectory design and dispersion analysis , 1996 .

[15]  Cheatwood F. McNeil,et al.  An Atmospheric Guidance Algorithm Testbed for the Mars Surveyor Program 2001 Orbiter and Lander , 1998 .

[16]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[17]  J. Balaram,et al.  Mars Science Laboratory Simulations for Entry, Descent, and Landing , 2006 .

[18]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[19]  Maxwell Noton Spacecraft navigation and guidance , 1998 .

[20]  Paul V. Tartabini,et al.  Six degree-of-freedom entry dispersion analysis for the METEOR Recovery Module , 1996 .

[21]  Patricia Mellodge,et al.  Uncertainty Propagation in Abstracted Systems , 2008 .