A one dimensional model for the determination of an ejector entrainment ratio

Abstract The proposed model is a new approach for the evaluation of the entrainment ratio of double choked ejectors, based on a perturbation procedure of linearized and axisymmetric supersonic flow. The model is developed in three regions: (i) the primary flow nozzle, (ii) the secondary flow channel, and (iii) the region of interaction between the supersonic nozzle jet and the secondary flow. Primary and secondary flows are assumed isentropic. A simultaneous numerical solution of the governing equations of the three regions is obtained by dividing the external supersonic jet flow in small volumes, where the external pressure, corresponding to the secondary flow pressure, is assumed constant in each volume. The model has been evaluated against experimental results obtained elsewhere, especially data from the Huang et al. (1999) investigation. The absolute average deviation of model entrainment ratio with respect to experimental data is of the order of 7%.

[1]  David F. Bagster,et al.  A New Ejector Theory Applied to Steam Jet Refrigeration , 1977 .

[2]  R. H. Parsons The steam turbine and other inventions of Sir Charles Parsons, O.M. , 1946 .

[3]  Gustav Flugel The Design of Jet Pumps , 1941 .

[4]  Wenjian Cai,et al.  Shock circle model for ejector performance evaluation , 2007 .

[5]  Bin-Juine Huang,et al.  A 1-D analysis of ejector performance , 1999 .

[6]  Bin-Juine Huang,et al.  A solar ejector cooling system using refrigerant R141b , 1998 .

[7]  M Ouzzane,et al.  Model development and numerical procedure for detailed ejector analysis and design , 2003 .

[8]  Roland Span,et al.  Equations of State for Technical Applications. II. Results for Nonpolar Fluids , 2003 .

[9]  J. Keenan,et al.  An Investigation of Ejector Design by Analysis and Experiment , 1950 .

[10]  Roland Span,et al.  Short Fundamental Equations of State for 20 Industrial Fluids , 2006 .

[11]  R. Emden Ueber die Ausströmungserscheinungen permanenter Gase , 1899 .

[12]  S. A. Sherif,et al.  A feasibility study of steam-jet refrigeration , 1998 .

[13]  Ruzhu Wang,et al.  Progress of mathematical modeling on ejectors , 2009 .

[14]  Jul. Hartmann,et al.  IV. The air-jet with a velocity exceeding that of sound , 1941 .

[15]  Kamaruzzaman Sopian,et al.  Review on solar-driven ejector refrigeration technologies , 2009 .

[16]  G. K. Alexis,et al.  A verification study of steam-ejector refrigeration model , 2003 .

[17]  D. C. Pack A NOTE ON PRANDTL'S FORMULA FOR THE WAVE-LENGTH OF A SUPERSONIC GAS JET , 1950 .

[18]  Walter Tollmien,et al.  Über die stationären Wellen in einem Gasstrahl , 1961 .

[19]  Changyun Wen,et al.  Numerical investigation of geometry parameters for design of high performance ejectors , 2009 .

[20]  Alan Powell A NOTE ON THE CELL LENGTH OF NONCIRCULAR SUPERSONIC JETS , 1991 .

[21]  Satha Aphornratana,et al.  A small capacity steam-ejector refrigerator: experimental investigation of a system using ejector with movable primary nozzle , 1997 .

[22]  A. Shapiro The dynamics and thermodynamics of compressible fluid flow. , 1953 .

[23]  L. Hartshorn The discharge of gases under high pressures , 1918 .

[24]  R. Yapıcı,et al.  Experimental determination of the optimum performance of ejector refrigeration system depending on ejector area ratio , 2008 .

[25]  Somchai Wongwises,et al.  Effect of throat diameters of the ejector on the performance of the refrigeration cycle using a two-phase ejector as an expansion device , 2007 .

[26]  Per Lundqvist,et al.  A year-round dynamic simulation of a solar-driven ejector refrigeration system with iso-butane as a refrigerant , 2007 .

[27]  Satha Aphornratana,et al.  Ejectors: applications in refrigeration technology , 2004 .

[28]  J. Fabri,et al.  Supersonic Air Ejectors , 1958 .

[29]  L. Rayleigh XVI. On the discharge of gases under high pressures , 1916 .

[30]  M. Elakdhar,et al.  Analysis of a Compression/Ejection Cycle for Domestic Refrigeration , 2007 .

[31]  Predrag Stojan Hrnjak,et al.  Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation , 2008 .

[32]  A. Selvaraju,et al.  Experimental investigation on R134a vapour ejector refrigeration system , 2006 .